A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of rolling on eating quality, starch structure, and water distribution in cooked indica rice dough. | LitMetric

Effects of rolling on eating quality, starch structure, and water distribution in cooked indica rice dough.

J Sci Food Agric

School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, Victoria, Australia.

Published: December 2024

Background: Given the composition of rice and its lack of gluten proteins, rice flour fails to form a cohesive and elastic dough when mixed directly with water. Consequently, many rice products rely on rice sheets (RS) made by rolling cooked rice dough. Limited research exists on how the rolling process impacts the properties and structure of cooked indica rice dough.

Results: This study investigated the effect of the number of rolling passes on the eating quality, starch structure, and water distribution of cooked fermented indica RS formed by dough. When the number of rolling passes reached six, the RS (RP-6) that was obtained exhibited the lowest cooking loss, the highest hardness, adhesiveness, and chewiness, and optimal stretchability. It also demonstrated the lowest water loss after freezing. Dense microstructures were observed on both the surface and cross-section of RP-6. More ordered starch crystal structures and double helix structures were formed. The relative peak area of tightly bound water significantly increased in RP-6, indicating a stronger bonding status between the starch and water molecules. However, excessive rolling passes (more than six) led to a partial disruption of the internal RS structure, resulting in a decline in eating quality.

Conclusion: The study demonstrated the importance of the rolling process in improving the performance of RS. It was found that a moderate number of rolling passes was conducive to producing excellent RS, providing a theoretical basis for the production of high-quality rice-based products such as rice noodles, dumplings, and cakes. © 2024 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.14068DOI Listing

Publication Analysis

Top Keywords

rolling passes
16
number rolling
12
eating quality
8
quality starch
8
starch structure
8
structure water
8
water distribution
8
distribution cooked
8
cooked indica
8
rice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!