AI Article Synopsis

  • The immune response against tumors relies on various immune cells that recognize cancer cells through different receptors, but tumors can evade detection by manipulating these interactions.
  • The study highlights the role of neolacto-series glycosphingolipids (nsGSLs), linked to the enzyme B3GNT5, in enabling tumors to escape immune recognition, particularly focusing on how the loss of signal peptide peptidase like 3 (SPPL3) leads to increased nsGSL levels that impair CD8 T cell activation.
  • Findings reveal that tumor cells deficient in SPPL3 are less targeted by neutrophils and NK cells, and the interaction dynamics—particularly through nsGSL expression—can influence immune cell activation and effectiveness, suggesting potential

Article Abstract

The development of an effective antitumor response relies on the synergistic actions of various immune cells that recognize tumor cells via distinct receptors. Tumors, however, often manipulate receptor-ligand interactions to evade recognition by the immune system. Recently, we highlighted the role of neolacto-series glycosphingolipids (nsGSLs), produced by the enzyme β1,3-N-acetylglucosaminyltransferase 5 (B3GNT5), in tumor immune escape. We previously demonstrated that loss of signal peptide peptidase like 3 (SPPL3), an inhibitor of B3GNT5, results in elevated levels of nsGSLs and impairs CD8 T cell activation. The impact of loss of SPPL3 and an elevated nsGSL profile in tumor cells on innate immune recognition remains to be elucidated. This study investigates the antitumor efficacy of neutrophils, NK cells, and γδ T cells on tumor cells lacking SPPL3. Our findings demonstrate that SPPL3-deficient target cells are less susceptible to trogocytosis by neutrophils and killing by NK cells and γδ T cells. Mechanistically, SPPL3 influences trogocytosis and γδ T cell-instigated killing through modulation of nsGSL expression, whereas SPPL3-mediated reduced killing by NK cells is nsGSL-independent. The nsGSL-dependent SPPL3 sensitivity depends on the proximity of surface receptor domains to the cell membrane and the affinity of receptor-ligand interactions as shown with various sets of defined antibodies. Thus, SPPL3 expression by tumor cells alters crosstalk with immune cells through the receptor-ligand interactome thereby driving escape not only from adaptive but also from innate immunity. These data underline the importance of investigating a potential synergism of GSL synthesis inhibitors with current immune cell-activating immunotherapies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.202451129DOI Listing

Publication Analysis

Top Keywords

tumor cells
16
cells
12
immune cells
8
receptor-ligand interactions
8
cells γδ
8
γδ cells
8
killing cells
8
immune
7
sppl3
6
tumor
5

Similar Publications

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!