Taurine, a normal dietary component that is found in many tissues, is considered important for a number of physiological processes. It is thought to play a particular role in eye development and in the maturation of both the muscular and nervous systems, leading to its suggested use as a therapeutic for Alzheimer's and Parkinson's diseases. Taurine increases metabolism and has also been touted as a weight loss aid. Due to its possible benefits to health and development, taurine is added as a supplement to a wide array of products, including infant formula and energy drinks. Despite its pervasive use as a nutritional additive and implied physiological actions, there is little consensus on how taurine functions. This is likely because, mechanistically, taurine has been demonstrated to affect multiple metabolic pathways. Simple models and straightforward assay systems are required to make headway in understanding this complexity. We chose to begin this work using the planarian because these animals have basic, well-understood muscular and nervous systems and are the subjects of many well-tested assays examining how their physiology is influenced by exposure to various environmental, nutritional, and therapeutic agents. We used a simple behavioral assay, the planarian locomotor velocity test (pLmV), to gain insight into the stimulant properties of taurine. Using this assay, we observed that taurine is a mild stimulant that is not affected by sugars or subject to withdrawal. We also provide evidence that taurine makes use of the dopamine D1 receptor to mediate this stimulant effect. Given the pervasiveness of taurine in many commercial products, our findings using the planarian system provide needed insight into the stimulant properties of taurine that should be considered when adding it to the diet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627082PMC
http://dx.doi.org/10.7717/peerj.18671DOI Listing

Publication Analysis

Top Keywords

taurine
11
dopamine receptor
8
muscular nervous
8
nervous systems
8
insight stimulant
8
stimulant properties
8
properties taurine
8
taurine stimulation
4
planarian
4
stimulation planarian
4

Similar Publications

Transcriptomics study of hippocampus in mice exposed to heat stress.

Psychoneuroendocrinology

January 2025

College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China. Electronic address:

Heat stress (HS) triggers various pathophysiological responses in the brain, including neuroinflammation and cognitive impairments. The objective of this study was to examine the impact of HS by comparing the hippocampal transcriptomes of mice exposed to HS with those under control conditions. Our analysis revealed that HS exposure did not affect the number of SNP or InDel mutations in the mouse hippocampus, nor did it influence SNP functions, distribution, or types.

View Article and Find Full Text PDF

Objective: Preventing return to alcohol is of critical importance for patients with alcohol-related cirrhosis and/or alcohol-associated hepatitis. Acamprosate is a widely used treatment for alcohol use disorder (AUD). We assessed the impact of acamprosate prescription in patients with advanced liver disease on abstinence rates and clinical outcomes.

View Article and Find Full Text PDF

Background: Taurine has been demonstrated to regulate and improve metabolic health. However, physiological and pathological differences among individuals with overweight or obesity may result in varied responses to taurine supplementation. This study aims to estimate the effects of long-term taurine supplementation on blood lipids, glycemia, and insulin sensitivity in adults with overweight or obesity through a systematic review and meta-analysis.

View Article and Find Full Text PDF

Several studies have highlighted the essential role of taurine in maintaining the health of small animals, particularly dogs. Taurine deficiency has been linked to various health issues, especially in certain dog breeds. Therefore, accurately assessing taurine levels in canine blood is crucial for diagnosing and monitoring these conditions.

View Article and Find Full Text PDF

Introduction: Ultra-high-field magnetic resonance (MR) systems (7 T and 9.4 T) offer the ability to probe human brain metabolism with enhanced precision. Here, we present the preliminary findings from 3D MR spectroscopic imaging (MRSI) of the human brain conducted with the world's first 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!