AI Article Synopsis

  • Studies have shown a rise in using artificial intelligence (AI) to detect and predict diseases, especially in vulnerable groups such as infants, highlighting the potential of large language models (LLMs) like ChatGPT.
  • Researchers systematically reviewed 154 out of 927 articles published between 2018 and 2022 to summarize developments in automated disease detection and prediction for infants in their first year of life.
  • A growing trend in research activity was noted, with a particular focus on diverse medical conditions, the use of clinical and laboratory data, and a preference for deep neural networks for prediction tasks, though traditional methods still have relevance.

Article Abstract

Over the last years, studies using artificial intelligence (AI) for the detection and prediction of diseases have increased and also concentrated more and more on vulnerable groups of individuals, such as infants. The release of ChatGPT demonstrated the potential of large language models (LLMs) and heralded a new era of AI with manifold application possibilities. However, the impact of this new technology on medical research cannot be fully estimated yet. In this work, we therefore aimed to summarise the most recent pre-ChatGPT developments in the field of automated detection and prediction of diseases and disease status in infants, i.e., within the first 12 months of life. For this, we systematically searched the scientific databases PubMed and IEEE Xplore for original articles published within the last five years preceding the release of ChatGPT (2018-2022). The search revealed 927 articles; a final number of 154 articles was included for review. First of all, we examined research activity over time. Then, we analysed the articles from 2022 for medical conditions, data types, tasks, AI approaches, and reported model performance. A clear trend of increasing research activity over time could be observed. The most recently published articles focused on medical conditions of twelve different ICD-11 categories; "certain conditions originating in the perinatal period" was the most frequently addressed disease category. AI models were trained with a variety of data types, among which clinical and demographic information and laboratory data were most frequently exploited. The most frequently performed tasks aimed to detect present diseases, followed by the prediction of diseases and disease status at a later point in development. Deep neural networks turned out as the most popular AI approach, even though traditional methods, such as random forests and support vector machines, still play a role-presumably due to their explainability or better suitability when the amount of data is limited. Finally, the reported performances in many of the reviewed articles suggest that AI has the potential to assist in diagnostic procedures for infants in the near future. LLMs will boost developments in this field in the upcoming years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625793PMC
http://dx.doi.org/10.3389/fdgth.2024.1459640DOI Listing

Publication Analysis

Top Keywords

prediction diseases
12
artificial intelligence
8
detection prediction
8
release chatgpt
8
developments field
8
diseases disease
8
disease status
8
activity time
8
medical conditions
8
data types
8

Similar Publications

Clarifying the inceptive pathophysiology of hypertensive heart disease helps to impede the disease progression. Through coarctation of the infrarenal abdominal aorta (AA), we induced hypertension in minipigs and evaluated physiological reactions and morpho-functional changes of the heart. Moderate aortic coarctation was achieved with approximately 30 mmHg systolic pressure gradient in minipigs.

View Article and Find Full Text PDF

MMFuncPhos: A Multi-Modal Learning Framework for Identifying Functional Phosphorylation Sites and Their Regulatory Types.

Adv Sci (Weinh)

January 2025

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.

Protein phosphorylation plays a crucial role in regulating a wide range of biological processes, and its dysregulation is strongly linked to various diseases. While many phosphorylation sites have been identified so far, their functionality and regulatory effects are largely unknown. Here, a deep learning model MMFuncPhos, based on a multi-modal deep learning framework, is developed to predict functional phosphorylation sites.

View Article and Find Full Text PDF

We have carried out spectral analysis of coronavirus disease 2019 (COVID-19) notifications in all 47 prefectures in Japan. The results confirm that the power spectral densities (PSDs) of the data from each prefecture show exponential characteristics, which are universally observed in the PSDs of time series generated by nonlinear dynamical systems, such as the susceptible/exposed/infectious/recovered (SEIR) epidemic model. The exponential gradient increases with the population size.

View Article and Find Full Text PDF

Predicting Drug-Drug Interactions (DDIs) enables cost reduction and time savings in the drug discovery process, while effectively screening and optimizing drugs. The intensification of societal aging and the increase in life stress have led to a growing number of patients suffering from both heart disease and depression. These patients often need to use cardiovascular drugs and antidepressants for polypharmacy, but potential DDIs may compromise treatment effectiveness and patient safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!