This study focuses on optimizing resource recovery technology in the dismantling process of retired lithium batteries to mitigate environmental pollution. Addressing the challenge of significant precious metal losses in traditional hydrometallurgical recycling methods, this study employs a reductive roasting-carbonation leaching process to selectively extract lithium from cathode materials using a reducing agent. The study examines the effects of parameters such as roasting temperature, time, and reducing agent dosage on lithium leaching efficiency, and explores additional factors including carbonation leaching time, carbon dioxide flow rate, liquid-to-solid ratio, and leaching temperature in conjunction with multi-stage countercurrent leaching technology. Characterization of the roasting products and leaching process is performed using X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The results demonstrate that, under conditions of a 700 °C roasting temperature, a 3-h roasting time, and a 15 % reducing agent dosage, the lithium leaching rate can achieve approximately 90 %. Following multi-stage countercurrent leaching, the lithium leaching rate exceeds 97 %, satisfying the purity requirements for battery-grade lithium carbonate. The innovation of this study is evident in its optimization of the recycling process, effectively separating and recovering cathode materials while reducing environmental pollution. This approach supports environmentally friendly waste treatment and contributes to the sustainable development of the battery industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625255 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e40251 | DOI Listing |
Eur J Clin Microbiol Infect Dis
January 2025
Department of Medical Microbiology, PGIMER, Chandigarh, Chandigarh, 160012, India.
Cefepime-tazobactam (FEP-TAZ) consists of cefepime combined with tazobactam, a penicillanic acid-sulfone recognized as an established beta-lactamase inhibitor. This study aims to investigate the in-vitro effectiveness of FEP-TAZ against cefepime-resistant clinical isolates of Escherichia coli (E. coli).
View Article and Find Full Text PDFCurr Atheroscler Rep
January 2025
Carbohydrate and Lipid Metabolism Research Unit, Department of Medicine, University of the Witwatersrand, Johannesburg, South Africa.
Purpose Of Review: Homozygous familial hypercholesterolaemia (HoFH) is characterized by marked elevation of low-density lipoprotein cholesterol (LDLC) and premature atherosclerotic cardiovascular disease. This is a review of novel pharmacological therapies to lower LDLC in patients with HoFH.
Recent Findings: Novel therapies can be broadly divided by whether their efficacy is dependent or independent of residual low-density lipoprotein receptor (LDLR) function.
Drug Deliv Transl Res
January 2025
Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil.
Current treatments for retinal disorders are anti-angiogenic agents, laser photocoagulation, and photodynamic therapies. These conventional treatments focus on reducing abnormal blood vessel formation in the retina, which, in a low-oxygen environment, can lead to harmful proliferation of endothelial cells. This results in dysfunctional, leaky blood vessels that cause retinal edema, hemorrhage, and vision loss.
View Article and Find Full Text PDFLung
January 2025
Department of Emergency Medicine, Aarupadai Veedu Medical College and Hospital, Vinayaka Missions Research Foundation, Puducherry, India.
Background: Hemoptysis, the expectoration of blood from the lower respiratory tract, varies in severity and necessitates effective management to mitigate morbidity. Traditional treatments include bronchial artery embolization and pharmacological approaches. Tranexamic acid (TXA), an antifibrinolytic agent known for its efficacy in reducing bleeding during surgery and trauma, is being explored for its efficacy in treating Hemoptysis via both intravenous and inhalational routes.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Arizona, Tucson, AZ, USA.
Background: Cerebral microvascular dysfunction and nitro-oxidative stress are present in patients with Alzheimer's disease (AD) and may contribute to disease progression and severity. A pro-nitro-oxidative environment can lead to post-translational modifications of ion channels central to microvascular regulation in the brain, including the large conductance Ca-activated K channels (BK). Nitro-oxidative modulation of BK can resulting in decreased activity and vascular hyper-contractility, thus compromising neurovascular regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!