A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Perinuclear compartment controls calcineurin/MEF2 signaling for axonal outgrowth of hippocampal neurons. | LitMetric

Central to the process of axon elongation is the concept of compartmentalized signaling, which involves the A-kinase anchoring protein (AKAP)-dependent organization of signaling pathways within distinct subcellular domains. This spatial organization is also critical for translating electrical activity into biochemical events. Despite intensive research, the detailed mechanisms by which the spatial separation of signaling pathways governs axonal outgrowth and pathfinding remain unresolved. In this study, we demonstrate that mAKAPα (AKAP6), located in the perinuclear space of primary hippocampal neurons, scaffolds calcineurin, NFAT, and MEF2 transcription factors for activity-dependent axon elongation. By employing anchoring disruptors, we show that the mAKAPα/calcineurin/MEF2 signaling pathway, but not NFAT, drives the process of axonal outgrowth. Furthermore, mAKAPα-controlled axonal elongation is linked to the changes in the expression of genes involved in Ca/cAMP signaling. These findings reveal a novel regulatory mechanism of axon growth that could be targeted therapeutically for neuroprotection and regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625814PMC
http://dx.doi.org/10.3389/fnmol.2024.1494160DOI Listing

Publication Analysis

Top Keywords

axonal outgrowth
12
hippocampal neurons
8
axon elongation
8
signaling pathways
8
signaling
6
perinuclear compartment
4
compartment controls
4
controls calcineurin/mef2
4
calcineurin/mef2 signaling
4
axonal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!