A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-Nuclearity Polyoxometalate-Based Metal-Organic Frameworks for Photocatalytic Oxidative Cleavage of C-C Bond. | LitMetric

High-Nuclearity Polyoxometalate-Based Metal-Organic Frameworks for Photocatalytic Oxidative Cleavage of C-C Bond.

Angew Chem Int Ed Engl

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China.

Published: December 2024

High-nuclearity polyoxometalate (POM) clusters are attractive building blocks (BBs) for the synthesis of metal-organic frameworks (MOFs) due to their high connectivity and inherently multiple metal centers as functional sites. This work demonstrates a strategy of step-wise growth on ring-shaped [PWO] precursor, which produced two new high-nuclearity polyoxotungstates, a half-closed [HPWO] {W} and a fully-closed [HPWO] {W}. By in situ synthesis, unique MOFs of copper triazole-benzoic acid (HL) complexes incorporating the negatively-charged {W} and {W} as nodes, {Cu(HL)W} HNPOMOF-1 and {Cu(HL)W} HNPOMOF-2, were constructed by delicately tuning the reaction conditions, mainly solution pH, which controls the formation of {W} and {W}, and at the same time the protonation of triazole-benzoic acid ligand thus its coordination mode to copper ion that creates the highest nuclearity POM-derived MOFs reported to date. HNPOMOF-1 features 3D framework possessing cage-like cavities filled with exposed carboxyl groups, while the inherent 2D layer-like HNPOMOF-2 allows for facile exfoliation into ultrathin nanosheets, and the resulted HNPOMOF-2 exhibits superior activity towards photocatalytic oxidative cleavage of C-C bond for a series of lignin models. This work not only provides a strategy to build high-nuclearity POM cluster-based frameworks, but also demonstrates their great potential as functional materials for green catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202421132DOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
8
photocatalytic oxidative
8
oxidative cleavage
8
cleavage c-c
8
c-c bond
8
[hpwo] {w}
8
triazole-benzoic acid
8
{w} {w}
8
{w}
6
high-nuclearity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!