A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insights into the Relationship between Temperature Variation and NAPL Removal during In Situ Thermal Remediation of Soil in the Presence of NAPL-Water Co-boiling: A Two-Dimensional Visualized Sandbox Study. | LitMetric

AI Article Synopsis

  • Thermal remediation is an effective method for cleaning up sites contaminated with nonaqueous phase liquids (NAPL) by heating the soil, utilizing a process called co-boiling at the water-NAPL interface to lower boiling points and conserve energy.
  • Determining the optimal heating duration is difficult due to the invisibility of NAPL underground, which can lead to unnecessary energy use, influenced by the initial NAPL size and location relative to the heat source.
  • This study uses a two-dimensional sandbox with real-time image processing and temperature sensors to monitor NAPL removal and temperature changes, ultimately proposing better sensor positioning and establishing a connection between temperature increase and NAPL removal efficiency.

Article Abstract

Thermal remediation effectively treats sites contaminated with nonaqueous phase liquids (NAPL) by heating soil. A key process is the co-boiling at the water-NAPL interface, which lowers the boiling point due to combined vapor pressures, potentially reducing energy needs. However, determining the optimal end time for heating is challenging due to the invisible nature of underground NAPL, often resulting in excessive energy use. The initial NAPL pool size and distance from the heat source influence the spatiotemporal evolution of the NAPL-water interface, defining three zones: the co-boiling equilibrium zone, a nonequilibrium zone, and an unaffected zone. The temperature data collected by fixed temperature sensors can reflect the spatiotemporal evolution of these zones, offering valuable insights into NAPL removal. This study tackles these challenges using a two-dimensional visualized sandbox integrated with real-time image processing and an array of temperature sensors to monitor the NAPL removal and temperature variation. The results reveal semiquantitatively the impact of different initial NAPL amounts and spatial distributions on temperature variations. An optimized strategy is proposed for temperature sensor positioning, and a qualitative relationship is established between the temperature increase and NAPL removal. These findings can enhance our understanding of subsurface temperature dynamics, supporting more efficient, decarbonized remediation practices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c09388DOI Listing

Publication Analysis

Top Keywords

napl removal
16
temperature
9
temperature variation
8
napl
8
thermal remediation
8
two-dimensional visualized
8
visualized sandbox
8
initial napl
8
spatiotemporal evolution
8
temperature sensors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!