ELISA and RT-PCR represent the standard tools for the sensitive identification of viruses in biological samples, but they lack the capacity to finely characterize the binding of viruses or viral antigens to monoclonal antibodies (MAbs). Biosensing technologies are gaining increasing importance as powerful MAb characterization tools in the field of virology. Surface plasmon resonance (SPR) is an optical biosensing technology already used for the in depth characterization of MAbs of diagnostic and therapeutic value. Rabbit haemorrhagic disease virus (RHDV) and foot-and-mouth disease virus (FMDV) are top veterinary issues for which the development of novel methods aimed at the characterization of antiviral MAbs represents a priority with important livestock healthcare and economic implications. With these premises in mind, here we prepared a series of SPR biosensors by immobilizing RHDV2 or its 6S subunit by different strategies that were then used to characterize the binding capacity of a panel of anti-RHDV2 MAbs. From the comparison of the results obtained, the biosensor composed of intact RHDV2 captured with catcher-MAb covalently immobilized to the surface showed the best analytical performances. To evaluate the versatility of the biosensor, the same strategy was then adopted using FMVD in cell extracts. The results obtained are discussed in view of the exploitation of SPR in the rapid and resilient fine characterization of antiviral MAbs for diagnostic or therapeutic purposes in the field of animal virology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2024.12.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!