Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iron modified bio-adsorbents gained a lot of attention recently, especially some iron-contain wastes were employed for fabrication. However, the influence of indigenous impurities in wastes was merely investigated. In this study, red mud (RM), an iron-rich by-product was employed as source to prepare Fe modified hydrochar (RM@HC) by a facile hydrothermal method, and then employed for Cd(II) removal from wastewater. The RM@HC demonstrated excellent adsorption performance with capacity of 598.26 mg/g and maintained with a wide pH range. Further, the removal mechanisms were comprehensively elucidated and calculated, which was attributed to the various interactions include physical adsorption (29.07%), reduction (27.61%), and co-precipitation (25.81%). Moreover, the abundant metal oxides in RM@HC contributed to the removal through co-precipitation by building a highly alkaline environment. This work provided a promising choice for the sustainable reutilization of RM by designing a green bio-adsorbent to remove heavy metals from wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143924 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!