AI Article Synopsis

  • Most cells in multicellular organisms need to attach to their environment, using structures called cell-matrix or cell-cell adhesions for stability.
  • Integrins are key transmembrane receptors that help form these adhesion complexes by connecting with extracellular matrix components and linking to the cell's cytoskeleton, allowing for signaling.
  • Recent research reveals that different types of integrin complexes, once thought to be separate, are actually interconnected and can influence each other's formation and transformation, particularly focusing on the versatile αvß5 integrins.

Article Abstract

The majority of cells within multicellular organisms requires anchorage to their surroundings in the form of cell-cell or cell-matrix adhesions. In regards to cell-matrix adhesions, the transmembrane receptors of the integrin family have long been recognized as the central scaffold around which these adhesion complexes are built. Via their extracellular domains integrins bind extracellular matrix ligands while their intracellular tails interact with a plethora of proteins that link integrin-based adhesions to the cytoskeleton and turn them also into important signaling platforms. Depending on the specific intracellular interactome of the integrins, different types of integrin adhesion complexes have been classified. The best-studied ones are the focal adhesions, in which integrins become firmly linked to contractile actomyosin fibers, allowing force transduction. But integrins also form an integral part of adhesion structures that lack the strong actomyosin link and are enriched in endocytic proteins. These have been named reticular adhesions, flat clathrin lattices, or clathrin plaques. Initially, the different types of integrin adhesion complexes have been viewed as discrete entities with their own separate life cycles. However, in the past years it has become more and more apparent how closely intertwined they are. In fact, it was shown that they can trigger each other's biogenesis or can even directly convert into each other. Here, we describe similarities as well as differences between integrin adhesion complexes, focusing on the versatile αvβ5 integrins, and discuss the recently discovered close links and interconversion modes between the different αvβ5 integrin adhesion types.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00821.2024DOI Listing

Publication Analysis

Top Keywords

adhesion complexes
16
integrin adhesion
16
focal adhesions
8
reticular adhesions
8
adhesions flat
8
flat clathrin
8
clathrin lattices
8
cell-matrix adhesions
8
types integrin
8
adhesions
6

Similar Publications

Osteointegration, the effective coupling between an implant and bone tissue, is a highly intricate biological process. The initial stages of bone-related immunomodulation and cellular colonization play crucial roles, but have received limited attention. Herein, a novel supramolecular co-assembled coating of strontium (Sr)-doped metal polyphenol networks (MPN) modified with c(RGDfc) is developed and well-characterized, for eliciting an early immunomodulation and cellular colonization.

View Article and Find Full Text PDF

Introduction: Amyand's hernia, an uncommon condition characterized by the presence of the appendix within an inguinal hernial sac (< 1% incidence), poses diagnostic and therapeutic challenges. Often it is an intraoperative finding, with almost no clinical symptoms.

Case Presentation: This is a case of an Indian male in his early 80 years, diagnosed with bilateral direct inguinal hernias, one of which contained a noninflamed appendix.

View Article and Find Full Text PDF

Rapid Preparation of Collagen/Red Blood Cell Membrane Tubes for Stenosis-Free Vascular Regeneration.

ACS Nano

January 2025

Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.

Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.

View Article and Find Full Text PDF

22q11.2 deletion syndrome (22q11.2DS) is one of the most common congenital malformation syndromes resulting from disrupted embryonic development of pharyngeal pouches.

View Article and Find Full Text PDF

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!