A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Epistasis between genetic variations on MdMYB109 and MdHXK1 exerts a large effect on sugar content in apple fruit. | LitMetric

AI Article Synopsis

  • Many quantitative traits, like apple fruit sugar content, are influenced by numerous minor genetic variations, complicating breeding efforts.
  • A study identified specific QTLs related to sucrose and fructose in apples through advanced techniques like QTL mapping and BSA-seq, focusing on a 'Jonathan' × 'Golden Delicious' cross.
  • Key SNP variations in genes MdMYB109 and MdHXK1 were found to enhance sugar content by influencing gene expression, leading to a more accurate genomics-assisted prediction model for breeding purposes.

Article Abstract

Many quantitative traits are controlled by multiple genetic variations with minor effects, making it challenging to resolve the underlying genetic network and to apply functional markers in breeding. Affected by up to a hundred quantitative trait loci (QTLs), fruit-soluble sugar content is one of the most complex quantitative traits in apple (Malus sp.). Here, QTLs for apple fruit sucrose and fructose content were identified via QTL mapping and bulked-segregant analysis sequencing (BSA-seq) using a population derived from a 'Jonathan' × 'Golden Delicious' cross. Allelic variations and non-allelic interactions were validated in the candidate genes within these defined QTL regions. Three single-nucleotide polymorphisms (SNPs) (SNP -326 C/T, SNP -705 A/G, and SNP -706 G/T) in the MdMYB109 promoter region affected the binding ability of the repressive transcription factor MdWRKY33, leading to increased MdMYB109 expression. MdMYB109 bound directly to the promoter of the sucrose transporter gene MdSUT2.2 and activated its expression, raising fruit sucrose content. A SNP (SNP1060 A/G) in the hexokinase gene MdHXK1 affected the phosphorylation of the transcription factor MdbHLH3, and phosphorylated MdbHLH3 interacted with MdMYB109 to co-activate MdSUT2.2 expression and increase fruit sucrose content. Adding the joint effects of the genotype combinations at the SNP markers based on the SNPs in MdMYB109 and MdHXK1 increased the prediction accuracy of a genomics-assisted prediction (GAP) model for total soluble solid content from 0.3758 to 0.5531. These results uncovered functional variations in MdMYB109 and MdHXK1 regulating apple fruit sucrose content. The updated GAP model with improved predictability can be used efficiently in apple breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.17187DOI Listing

Publication Analysis

Top Keywords

fruit sucrose
16
mdmyb109 mdhxk1
12
apple fruit
12
sucrose content
12
genetic variations
8
variations mdmyb109
8
sugar content
8
quantitative traits
8
transcription factor
8
gap model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!