Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Health related quality of life (HRQoL) is increasingly assessed in oncology research and routine care, which has led to the inclusion of HRQoL in prediction models. This review aims to describe the current state of oncological prediction models incorporating HRQoL. A systematic literature search for the inclusion of HRQoL in prediction models in oncology was conducted. Selection criteria were a longitudinal study design and inclusion of HRQoL data in prediction models as predictor, outcome, or both. Risk of bias was assessed using the PROBAST tool and quality of reporting was scored with an adapted TRIPOD reporting guideline. From 4747 abstracts, 98 records were included in this review. High risk of bias was found in 71% of the publications. HRQoL was mainly incorporated as predictor (78% (55% predictor only, 23% both predictor and outcome)), with physical functioning and symptom domains selected most frequently as predictor. Few models (23%) predicted HRQoL domains by other or baseline HRQoL domains. HRQoL was used as outcome in 21% of the publications, with a focus on predicting symptoms. There were no difference between AI-based (16%) and classical methods (84%) in model type selection or model performance when using HRQoL data. This review highlights the role of HRQoL as a tool in predicting disease outcomes. Prediction of and with HRQoL is still in its infancy as most of the models are not fully developed. Current models focus mostly on the physical aspects of HRQoL to predict clinical outcomes, and few utilize AI-based methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11136-024-03820-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!