Infinite ground-state degeneracy of a two-dimensional athermal lattice-gas.

J Chem Phys

Dipartimento di Ingegneria, Università degli Studi della Campania "Luigi Vanvitelli," Via Roma 29, 81031 Aversa, Italy.

Published: December 2024

I studied the ground state properties and phase behavior of a two-dimensional lattice gas in which hard-core particles can have at most one nearest neighboring occupied site on the square lattice. Monte Carlo simulations in the grand-canonical ensemble showed no apparent signature of singular thermodynamic behavior when the chemical potential was increased. The absence of an ordering phase transition is traced to the large number of ground state configurations the model is endowed, which is due to the impossibility of satisfying simultaneously closest packing around a vacancy and around a particle. Numerical simulations confirm that the ground state entropy is proportional to the square root of system size.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0244700DOI Listing

Publication Analysis

Top Keywords

ground state
12
infinite ground-state
4
ground-state degeneracy
4
degeneracy two-dimensional
4
two-dimensional athermal
4
athermal lattice-gas
4
lattice-gas studied
4
studied ground
4
state properties
4
properties phase
4

Similar Publications

DFT study of the binary intermetallic compound NdMn in different polytypic phases.

J Mol Model

January 2025

Department of Physics, University of Malakand, Chakdara, Dir (Lower), 18800, KP, Pakistan.

Context: The structural stability, ground state magnetic order, electronic, elastic and thermoelectric properties of NdMn in the C15, C14 and C36 polytypic phases is investigated. The magnetic phase optimization and magnetic susceptibility reveal that NdMn is antiferromagnetic (AFM) in C36 phase; and paramagnetic (PM) in C14 and C15 phases respectively. The band profiles and electrical resistivity show the metallic nature in all these polytypic phases and reveal that the C36 phase possesses smaller resistivity.

View Article and Find Full Text PDF

Indigenous Maya-Mam leadership competencies: a grounded theory study.

Front Sociol

January 2025

Agricultural Economics and Agricultural Business Department, New Mexico State University, Las Cruces, NM, United States.

Introduction: This study explores the leadership competencies within the Indigenous Maya-Mam community, aiming to understand the specific skills and qualities exhibited by Maya-Mam leaders. The research seeks to address the gap in literature regarding Indigenous leadership practices, particularly focusing on how cultural values influence leadership behaviors.

Methods: Qualitative methods were employed for this study, including interviews and thematic analysis.

View Article and Find Full Text PDF

Detection canines can identify numerous substances for which they have been trained. Historically, and a point of ongoing contention, detection canine threshold (i.e.

View Article and Find Full Text PDF

Enhancing the Optically Detected Magnetic Resonance Signal of Organic Molecular Qubits.

ACS Cent Sci

January 2025

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.

In quantum information science and sensing, electron spins are often purified into a specific polarization through an optical-spin interface, a process known as optically detected magnetic resonance (ODMR). Diamond-NV centers and transition metals are both excellent platforms for these so-called color centers, while metal-free molecular analogues are also gaining popularity for their extended polarization lifetimes, milder environmental impacts, and reduced costs. In our earlier attempt at designing such organic high-spin π-diradicals, we proposed to spin-polarize by shelving triplet = ±1 populations as singlets.

View Article and Find Full Text PDF

Carbon Doping in Small Lithium Clusters: Structural, Energetic, and Electronic Properties from Quantum Monte Carlo Calculations.

ACS Omega

January 2025

Instituto de Física, Universidade Federal de Goiás, Goiânia, Goiás 74001-970, Brazil.

We investigate the energetic and structural properties of small lithium clusters doped with a carbon atom using a combination of computational methods, including density functional theory (DFT), diffusion quantum Monte Carlo (DMC), and the Hartree-Fock (HF) approximation. We calculate the lowest energy structures, total ground-state energies, electron populations, binding energies, and dissociation energies as a function of cluster size. Our results show that carbon doping significantly enhances the stability of lithium clusters, increasing the magnitude of the binding energy by 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!