Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Keratocytes are the primary resident cells in the corneal stroma. They play an essential role in maintaining corneal physiological function. Studying the factors that affect the phenotype and behavior of keratocytes offers meaningful perspectives for improving the understanding and treatment of corneal injuries. In this study, 3% strain was applied to human keratocytes using the Flexcell® Tension Systems. Real-time quantitative PCR (RT-qPCR) and western blot were used to investigate the influence of strain on the expression of intracellular aldehyde dehydrogenase 3A1 (ALDH3A1). ALDH3A1 knockdown was achieved using double-stranded RNA-mediated interference (RNAi). Immunofluorescence (IF) staining was employed to observe the impact of changes in ALDH3A1 expression on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) nuclear translocation. Keratocyte proliferation and migration were assessed by bromodeoxyuridine (BrdU) assay and scratch wound healing assay, respectively. Mouse injury models and single-cell RNA sequencing of keratocytes from keratoconus patients were used to assess how strain influenced ALDH3A1 in vivo. Our results demonstrate that 3% strain suppresses keratocyte proliferation and increases ALDH3A1. Increased ALDH3A1 inhibits NF-κB nuclear translocation, a key step in the activation of the NF-κB signaling pathway. Conversely, ALDH3A1 knockdown promotes NF-κB nuclear translocation, ultimately enhancing keratocyte proliferation and migration. Elevated ALDH3A1 levels were also observed in mouse injury models with increased corneal strain and keratoconus patients. These findings provide valuable insights for further research into the role of corneal strain and its connection to corneal injury repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627209 | PMC |
http://dx.doi.org/10.1096/fj.202401392R | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!