Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
MoS is a promising sulfur host material for lithium-sulfur (Li-S) batteries, but its low conductivity and limited active edge sites largely inhibit the catalytic activity toward the conversion of lithium polysulfides (LiPSs). Herein, we propose an electron bridge strategy by combining interlayer structure modification and electronic modulation to activate the basal-plane catalytic activity of MoS for the highly efficient catalytic conversion of LiPSs. As validated by experimental characterizations and theoretical calculations, the proposed strategy not only creates a conductive network but also induces delocalized electron redistribution within the MoS basal planes, leading to facilitated interfacial charge transfer kinetics and accelerated LiPSs redox kinetics. Because of these advantages, the Li-S batteries assembled with regulated MoS demonstrate outstanding electrochemical performance even under practical conditions. This work demonstrates the effectiveness and potential of regulating the intrinsic basal-plane catalytic activity of transition-metal dichalcogenides for Li-S batteries and beyond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c04139 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!