This protocol presents a simple system for the creation and culture of Precision-cut Liver Slices (PCLS). PCLS contains all cells in an intact environment and, therefore, resembles a mini model of the whole organ. They enable the study of live tissues while replicating their complex phenotypes. This protocol allows the preparation of slices from mouse livers using a vibratome and standard laboratory equipment. Protocols for producing and culturing PCLS lack standardization and can vary quite drastically depending on the tissue of interest, the type of vibratome used, and the need for oxygen. These can be difficult to reproduce in some laboratories that have only access to a basic vibratome and common tissue culture facilities. We have put together a protocol focusing on the importance of some key steps within the varied protocols already available. This protocol, therefore, emphasizes the importance of the embedding method, the cutting orientation, a dynamic versus a static system, and the relevance of a minimum volume of culture. This protocol can be established and reproduced in a simple manner in most laboratories that have access to a basic tissue slicer. Taken together and following this protocol, PCLS can stay alive for a minimum of 4 days. PCLS is a simple, economical, and reproducible model to study pathophysiological and therapeutic screening for organs such as the liver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/67202 | DOI Listing |
bioRxiv
December 2024
Department of Mechanical Engineering, University of Minnesota, MN, USA.
Background And Aims: High-throughput in vitro pharmacological toxicity testing is essential for drug discovery. Precision-cut liver slices (PCLS) provide a robust system for screening that is more representative of the complex 3D structure of the whole liver than isolated hepatocytes. However, PCLS are not available as off-the-shelf products, significantly limiting their translational potential.
View Article and Find Full Text PDFSci Transl Med
December 2024
Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
Excessive deposition of fibrillar collagen in the interstitial extracellular matrix (ECM) of human lung tissue causes fibrosis, which can ultimately lead to organ failure. Despite our understanding of the molecular mechanisms underlying the disease, no cure for pulmonary fibrosis has yet been found. We screened a drug library and found that dextromethorphan (DXM), a cough expectorant, reduced the amount of excess fibrillar collagen deposited in the ECM in cultured primary human lung fibroblasts, a bleomycin mouse model, and a cultured human precision-cut lung slice model of lung fibrosis.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Surgery, University of Florida, Gainesville, FL, United States.
Lung ischemia-reperfusion injury (IRI), a common complication after lung transplantation (LTx), plays a crucial role in both primary graft dysfunction (PGD) and chronic lung allograft dysfunction (CLAD) thereby adversely impacting the clinical outcomes in these patient cohorts. Lung IRI is characterized by several molecular events including immune cell infiltration, reactive oxygen species (ROS) generation, calcium overload, inflammation and various forms of cell death pathways. Currently, no therapeutic agents are available to clinically prevent lung IRI.
View Article and Find Full Text PDFSci Transl Med
December 2024
Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada.
ATP citrate lyase (ACLY), a crucial enzyme in de novo lipid synthesis and histone acetylation, plays a key role in regulating vascular smooth muscle cell (VSMC) proliferation and survival. We found that human coronary and pulmonary artery tissues had up-regulated ACLY expression during vascular remodeling in coronary artery disease and pulmonary arterial hypertension. Pharmacological and genetic inhibition of ACLY in human primary cultured VSMCs isolated from the coronary arteries of patients with coronary artery diseases and from the distal pulmonary arteries of patients with pulmonary arterial hypertension resulted in reduced cellular proliferation and migration and increased susceptibility to apoptosis.
View Article and Find Full Text PDFJ Vis Exp
November 2024
Great Ormond Street Institute of Child Health, University College London; Great Ormond Street Hospital for Children NHS Foundation Trust; National Institute of Health Research Great Ormond Street Biomedical Research Centre;
This protocol presents a simple system for the creation and culture of Precision-cut Liver Slices (PCLS). PCLS contains all cells in an intact environment and, therefore, resembles a mini model of the whole organ. They enable the study of live tissues while replicating their complex phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!