Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polybenzenoid hydrocarbons (PBHs) have garnered significant attention in the field of organic electronics due to their unique electronic properties. To facilitate the design and discovery of new functional organic materials based on these compounds, it is necessary to assess their diradical character. However, this usually requires expensive multireference calculations. In this study, we demonstrate rapid identification and quantification of open-shell character in PBHs using the fractional occupation number weighted electron density metric () calculated with the semiempirical GFN2-xTB (xTB) method. We apply this approach to the entire chemical space of PBHs containing up to 10 rings, a total of over 19k molecules, and find that approximately 7% of the molecules are identified as having diradical character. Our findings reveal a strong correlation between xTB-calculated and the more computationally expensive Yamaguchi and DFT-calculated , validating the use of this efficient method for large-scale screening. Additionally, we identify a linear relationship between size and value and implement a size-dependent threshold for open-shell character, which significantly improves the accuracy of diradical identification across the chemical space of PBHs. This size-aware approach reduces false positive identifications from 6.97% to 0.38% compared to using a single threshold value. Overall, this work demonstrates that xTB-calculated provides a rapid and cost-effective alternative for large-scale screening of open-shell character in PBHs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp04059g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!