Our autobiographical experiences typically occur within the context of familiar spatial locations. When we encode these experiences into memory, we can use our spatial map of the world to help organize these memories and later retrieve their episodic details. However, it is still not well understood what psychological and neural factors make spatial contexts an effective scaffold for storing and accessing memories. We hypothesized that spatial locations with distinctive and stable neural representations would best support the encoding and robust reinstatement of new episodic memories. We developed a novel paradigm that allowed us to quantify the within-participant reliability of a spatial context ("room reliability") memory encoding, which could then be used to predict the degree of successful re-activation of item memories. To do this, we constructed a virtual reality (VR) "memory palace", a custom-built environment made up of 23 distinct rooms that participants explored using a head-mounted VR display. The day after learning the layout of the environment, participants underwent whole-brain fMRI while being presented with videos of the rooms in the memory palace, allowing us to measure the reliability of the neural activity pattern associated with each room. Participants were taken back to VR and asked to memorize the locations of 23 distinct objects randomly placed within each of the 23 rooms, and then returned to the scanner as they recalled the objects and the rooms in which they appeared. We found that our room reliability measure was predictive of object reinstatement across cortex, and further showed that this was driven not only by the group-level reliability of a room across participants, but also the idiosyncratic reliability of rooms within each participant. Together, these results showcase how the quality of the neural representation of a spatial context can be quantified and used to 'audit' its utility as a memory scaffold for future experiences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623609 | PMC |
http://dx.doi.org/10.1101/2024.11.26.625465 | DOI Listing |
Environ Sci Technol
January 2025
Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States.
The Gulf States are home to industries emitting styrene, benzene, toluene, ethylbenzene, and xylenes (SBTEX). Presently, adverse health effects of ambient SBTEX exposure in highly polluted regions, such as the Gulf States, must be evaluated. Epidemiologists, however, are limited by inadequate estimates of ambient SBTEX.
View Article and Find Full Text PDFZoological Lett
January 2025
National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.
In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.
View Article and Find Full Text PDFBehav Res Methods
January 2025
Department of Psychology, Sapienza, University of Rome, Rome, Italy.
The complex interplay between low- and high-level mechanisms governing our visual system can only be fully understood within ecologically valid naturalistic contexts. For this reason, in recent years, substantial efforts have been devoted to equipping the scientific community with datasets of realistic images normed on semantic or spatial features. Here, we introduce VISIONS, an extensive database of 1136 naturalistic scenes normed on a wide range of perceptual and conceptual norms by 185 English speakers across three levels of granularity: isolated object, whole scene, and object-in-scene.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China.
Exploring the response relationship between civil war, population and land cover change is of great practical significance for social stability in Myanmar. However, the ongoing civil war in Myanmar hinders direct understanding of the situation on the ground, which in turn limits detailed study of the intricate relationship between the dynamics of the civil war and its impact on population and land. Therefore, this paper explores the response relationship between civil war conflict and population and land cover change in Myanmar from 2010 to 2020 from the perspective of remote sensing using the land cover data we produced, the open spatial demographics data, and the armed conflict location and event data project.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
In the spore-forming bacterium Bacillus subtilis transcription and translation are uncoupled and the translational machinery is located at the cell poles. During sporulation, the cell undergoes morphological changes including asymmetric division and chromosome translocation into the forespore. However, the fate of translational machinery during sporulation has not been described.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!