Land-based mazes that require spatial cues to identify the location of a hiding-place are a low-stress method to evaluate learning rate and memory retention in mice. One version, the Barnes maze, allows quantification of naturalistic exploratory behaviors not evident in water-based tasks. As the task relies on innate behaviors, it does not require overtraining, making it more feasible to examine early learning and non-memory executive functions that are characteristic of some non-amnestic dementias. However, because it is difficult to hide odor cues in the traditional version of the maze, learning rate during individual trials can be difficult to interpret. We designed and tested the use of 3D-printed escape shuttles that can be made in duplicate, as well as a docking tunnel that allows mice to self-exit the maze to improve reproducibility and limit experimenter influence. In combination with maze turning and escape tunnel caps, we show our shuttles mitigate the possibility of undesired cues. We then compare use of our 4-day protocol across several mouse models of cognitive impairment. We demonstrate an additional stage, the STARR protocol (Spatial Training and Rapid Reversal), to better challenge executive functions such as working memory and behavioral flexibility. We examine commonly used outcome measures across mice with and without access to spatial cues, as well as across mouse models of cognitive impairment to demonstrate the use of our 4-day protocol. Overall, this protocol provides detailed instructions to build and perform a robust spatial maze that can help expand the range of deficits identified. Our findings will aid in interpretation of traditional protocols, as well as provide an updated method to screen for both amnestic and non-amnestic cognitive changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623659 | PMC |
http://dx.doi.org/10.1101/2024.11.30.625516 | DOI Listing |
Diabet Med
December 2024
Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan.
Aims: Skin disorders occur more frequently with sodium-dependent glucose cotransporter type 2 (SGLT2) inhibitors than with other antidiabetic drugs. We conducted basic research using ipragliflozin, with the aim of identifying new measures to prevent skin disorders caused by SGLT2 inhibitors.
Methods: db/db type 2 diabetes model mice were orally administered ipragliflozin (10 mg/kg or 30 mg/kg) once a day for 28 days and skin function genes were analysed by real-time RT-PCR or Western blotting.
Toxicol Appl Pharmacol
December 2024
Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China. Electronic address:
Non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease. The present work aimed to explore the function of regulator of Calcineurin 2 (RCAN2) in NAFLD and its related mechanisms. Mice were fed with high-fat diet (HFD) to construct NAFLD model.
View Article and Find Full Text PDFInt J Biochem Cell Biol
December 2024
Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China; College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China. Electronic address:
Considering the high degree of malignancy, recurrence rate and poor prognosis, exploring promising targets is an imperious strategy for colorectal carcinoma therapy. Recent studies have indicated that GABPα plays a role in cancer aggressiveness, but its exact function and regulatory mechanisms in colorectal cancer progression remain unclear. This study aims to explore the biological role of GABPα and its upstream regulator, miR-378a-5p, in modulating cancer progression.
View Article and Find Full Text PDFExp Eye Res
December 2024
Department of Biochemistry, Post-Graduate Program in Biochemistry and Post-Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil. Electronic address:
High intraocular pressure (HIOP) and high glucose levels are associated with oxidative stress. Although physical exercise protects against oxidative damage, its specific impact on eye health remains unclear. Thus, this study aimed to assess the impact of physical exercise on the oxidative status of whole eyes in male Swiss mice subjected to HIOP model and cafeteria diet (CD).
View Article and Find Full Text PDFExp Eye Res
December 2024
Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031. Electronic address:
We aimed to explore the protective effects and underlying mechanisms of taurine on retinal cells during acute ocular hypertension (AOH)-induced damage. Retinal morphology, apoptosis, mitochondrial structure, electroretinography, expression of GTP binding protein 3 (GTPBP3), and molecules in the unfolded protein response (UPR) were examined in an AOH mouse model and wild-type (WT) mice with or without intravitreal injection of taurine. For in vitro experiments, the GTPBP3 expression and endoplasmic reticulum (ER) stress were examined in R28 cell line under hydrogen peroxide (HO)-induced damage or hypoxia/reoxygenation (H/R)-induced damage, with or without taurine pretreatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!