Unlabelled: Tubular membrane structures are ubiquitous in cells and in the membranes of intracellular organelles such as the Golgi complex and the endoplasmic reticulum. Tubulation plays essential roles in numerous biological processes, including filopodia growth, trafficking, ion transport, and cellular motility. Understanding the fundamental mechanism of the formation of membrane tubes is thus an important problem in the fields of biology and biophysics. Though extensive studies have shown that tubes can be formed due to localized forces acting on the membrane or by the curvature induced by membrane-bound proteins, little is known about how membrane tubes are induced by glycocalyx, a sugar-rich layer at the cell surface. In this work, we develop a biophysical model that combines polymer physics theory and the Canham-Helfrich membrane theory to investigate how the glycocalyx generates cylindrical tubular protrusions on the cell membrane. Our results show that the glycocalyx alone can induce the formation of tubular membrane structures. This tube formation involves a first-order shape transition without any externally applied force or other curvature-inducing mechanisms. We also find that critical values of glycocalyx grafting density and glycopolymer length are needed to induce the formation of tubular structures. The presence of vertical actin force, line tension, and spontaneous curvature reduces the critical grafting density and length of polymer that triggers the formation of membrane tube, which suggests that the glycocalyx makes tube formation energetically more favorable when combined with an actin force, line tension, and spontaneous curvature.

Significance Statement: In many cells, the existence of glycocalyx, a thick layer of polymer meshwork comprising proteins and complex sugar chains coating the outside of the cell membrane, regulates the formation of membrane tubes. Here, we propose a theoretical model that combines polymer physics theory and the Canham-Helfrich membrane theory to study the formation of cylindrical tubular protrusions induced by the glycocalyx. Our findings indicate that glycocalyx plays an important role in the formation of membrane tubes. We find that there exists critical grafting density and length of polymer that triggers the formation of membrane tubes, and the glycocalyx-induced tube formation is facilitated when combined with actin forces, line tension, and spontaneous curvature. Our theoretical model has implications for understanding how biological membranes may form tubular structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623602PMC
http://dx.doi.org/10.1101/2024.11.27.625577DOI Listing

Publication Analysis

Top Keywords

formation membrane
24
membrane tubes
24
membrane
14
tube formation
12
grafting density
12
tension spontaneous
12
formation
11
tubular membrane
8
membrane structures
8
glycocalyx
8

Similar Publications

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Treponema denticola major surface protein (Msp): a key player in periodontal pathogenicity and immune evasion.

Arch Microbiol

January 2025

Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.

Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T.

View Article and Find Full Text PDF

Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Construction of a Vero cell line expression human KREMEN1 for the development of CVA6 vaccines.

Virol J

January 2025

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China.

Coxsackievirus A6 (CVA6) has emerged as a major pathogen causing hand, foot and mouth disease (HFMD) outbreaks worldwide. The CVA6 epidemic poses a new challenge in HFMD control since there is currently no vaccine available against CVA6 infections. The Vero cell line has been widely used in vaccine production, particularly in the preparation of viral vaccines, including poliovirus vaccines and EV71 vaccines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!