The effect of synthesis methods on the structural, magnetic, electrical transport, and magnetoresistance (MR) properties of K-deficient LaK□MnO (LKMO) materials has been investigated. The compounds were synthesized sol-gel (SG), wet-mixing (WM), and solid-state (SS) reaction. The resulting ceramics were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and four point probe (FPP) techniques to evaluate their crystal structure, morphologies, elemental composition, electrical transport properties, and magnetoresistance (MR) behavior. This study reveals that the electrical- and magneto-transport properties of LKMO ceramics are strongly influenced by their synthesis method. Among the samples, the WM method yielded ceramics with smaller grain sizes and more dispersed grain boundaries, leading to reduced resistivity. The MR values for LKMO ceramics synthesized through SG, WM, and SS reached 17.05% at 287.74 K, 54.68% at 271.50 K, and 47.09% at 270.25 K, respectively. The WM-synthesized sample exhibited superior crystal quality and enhanced magnetic and electrical properties. These results indicate that LKMO ceramics are promising candidates for application in magnetic sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622788 | PMC |
http://dx.doi.org/10.1039/d4ra07105k | DOI Listing |
Cureus
December 2024
Department of Periodontics, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, IND.
The field of periodontal regeneration focuses on restoring the form and function of periodontal tissues compromised due to diseases affecting the supporting structures of teeth. Biomaterials have emerged as a vital component in periodontal regenerative therapy, offering a variety of properties that enhance cellular interactions, promote healing, and support tissue reconstruction. This review explores current advances in biomaterials for periodontal regeneration, including ceramics, polymers, and composite scaffolds, and their integration with biological agents like growth factors and stem cells.
View Article and Find Full Text PDFClin Cosmet Investig Dent
January 2025
Department of Restorative Dentistry, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil.
Objective: This study aimed to evaluate the in vitro effects of coffee exposure on the color and roughness of conventional and bulk-fill resin composites, with and without surface pre-reacted glass-ionomer (S-PRG) filler.
Methodology: Forty-eight cylindrical samples (Ø6 mm × 2 mm) were prepared and categorized as follows (n = 12 per group): conventional nano-hybrid (Tetric N-Ceram, Ivoclar); nano-hybrid with S-PRG filler (Beautifil II, Shofu); bulk-fill (Tetric N-Ceram Bulk Fill, Ivoclar); and bulk-fill with S-PRG filler (Beautifil Bulk Restorative, Shofu). The samples were assessed for surface roughness (Ra, μm), color coordinates (CIE Lb), and overall color change (ΔE, ΔE).
Small
January 2025
BASF SE, Dept. Analytical & Material Science, 67056, Ludwigshafen, Germany.
Assessing the inhalation hazard of microplastics is important but necessitates sufficient quantity of microplastics that are representative and respirable (<4 µm). Common plastics are not typically manufactured in such small sizes. Here, solvent precipitation is used to produce respirable test materials from thermoplastics polyurethane (TPU), polyamide (PA-6), polyethylene terephthalate (PET), and low-density polyethylene (LDPE).
View Article and Find Full Text PDFSmall
January 2025
School of Energy and Power Engineering, Beihang University, Beijing, 100191, China.
The manufacturing of thin films through selective laser sintering of micro/nanoparticles is an emerging technology that has been developing rapidly over the last two decades owing to its digitization, efficiency, and good adaptability to various materials. However, high-quality laser sintering of different materials remains a challenge: ceramic particles are difficult to be sintered due to low absorbance; metallic particles are prone to oxidation; semiconductor particles are difficult to process for performance enhancement due to high stress. In this work, a new approach is proposed that employs an additional Indium Tin Oxide (ITO) sacrificial layer to assist laser sintering of different functional materials, which detaches after sintering without contaminating the target material.
View Article and Find Full Text PDFSmall
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
Enhancing the catalytic performance and durability of M-N─C catalyst is crucial for the efficient operation of proton exchange membrane fuel cells (PEMFCs) and Zn-Air batteries (ZABs). Herein, an approach is developed for the in situ fabrication of a MOFs-derived porous carbon material, co-loaded with Co nanoparticles (NPs) and Co-N sites and integrated onto Fe-doped carbon nanotubes (CNTs), named Co-NC/Fe-NCNTs. Incorporating polymer-wrapped CNTs improves MOFs dispersion annealing at high temperature, which amplifies the three-phase boundary (TPB) by generating much more mesopores and exposing additional active sites within the catalysts layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!