Gastropods are major contributors to a range of key ecosystem services on intertidal rock platforms, supporting trophic structure in both terrestrial and marine contexts and manipulating habitat complexity. However, the functional structure of these assemblages is rarely examined across broad spatial scales. Here, we describe patterns in gastropod functional diversity, redundancy and vulnerability to functional loss across a latitudinal gradient following the west coast of Australia (18° S-34° S). Specifically, we created a trait matrix based on six categorical traits for 186 gastropod species from 39 sites to examine how trait composition varied with latitude. We found there was no latitudinal gradient in either functional richness or distinctiveness despite clear gradients in species richness and taxonomic distinctiveness, which both increased towards the equator. We delineated two distinct functional bioregions, a temperate south (34° S-27° S) and a tropical north (24° S-18° S), and found that the temperate bioregion had greater functional richness and uniqueness but lower redundancy compared to the tropical bioregion. Our findings show that gastropod assemblages in the temperate bioregion are more vulnerable to functional loss as their functional entities are supported by fewer or even single species. Comparatively, the tropical bioregion reported higher redundancies, which could provide a buffer against future change. Understanding the functional structure of intertidal ecosystems is vital as gastropods face the uncertain impacts of coastal tropicalisation, range shifts and sea level rise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621237PMC
http://dx.doi.org/10.1002/ece3.70657DOI Listing

Publication Analysis

Top Keywords

functional
9
intertidal ecosystems
8
functional structure
8
functional loss
8
latitudinal gradient
8
functional richness
8
temperate bioregion
8
tropical bioregion
8
temperate
4
temperate intertidal
4

Similar Publications

Antireflux surgery - choosing the right candidate.

Expert Rev Gastroenterol Hepatol

January 2025

Department of Gastroenterology & Hepatology, Amsterdam University Medical Center, Amsterdam, the Netherlands.

Introduction: Surgical gastric fundoplication is an effective treatment option for gastroesophageal reflux disease. In contrast to acid suppression, fundoplication nearly abolishes all types of reflux, acid and nonacid. However, in some cases lasting side effects of the procedure may overshadow its positive effects.

View Article and Find Full Text PDF

Reduction-oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV).

View Article and Find Full Text PDF

The mini-cutting physiological condition is vital for the rooting process. For accurate interpretation, considering all mini-cutting responses in an experiment is necessary to identify significant rooting-biomarkers. The study investigates rooting-biomarkers during vegetative propagation, focusing on Ilex paraguariensis (yerba mate) clones of contrasting mini-cutting rooting performance as a case study (i.

View Article and Find Full Text PDF

Down syndrome (DS) or trisomy 21 (T21) is present in a significant number of children and adults around the world and is associated with cognitive and medical challenges. Through research, the T21 Research Society (T21RS), established in 2014, unites a worldwide community dedicated to understanding the impact of T21 on biological systems and improving the quality of life of people with DS across the lifespan. T21RS hosts an international conference every two years to support collaboration, dissemination, and information sharing for this goal.

View Article and Find Full Text PDF

The Translation Initiation Factor eIF2Bα Regulates Development, Stress Response, Amylase Production, and Kojic Acid Synthesis in the Fungus Aspergillus oryzae.

Curr Microbiol

January 2025

Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China.

Translation initiation, which involves numerous protein factors and coordinated control steps, represents the most complicated process during eukaryotic translation. However, the roles of eukaryotic translation initiation factor (eIF) in filamentous fungi are not well clarified. In this study, we investigated the function of eIF2Bα in Aspergillus oryzae, an industrially important filamentous fungus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!