An optimized ensemble model with advanced feature selection for network intrusion detection.

PeerJ Comput Sci

EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia.

Published: November 2024

AI Article Synopsis

  • Advances in technology have increased connectivity but also introduced new cyber threats, making Network Intrusion Detection Systems (NIDS) vital for security.
  • Traditional machine learning methods have been used for intrusion detection, but they struggle with sophisticated threats that evolve over time.
  • The study introduces "Optimized Random Forest," an advanced model that combines decision forests and genetic algorithms to improve detection accuracy, featuring a comprehensive evaluation against existing machine learning models, showing its effectiveness in enhancing NIDS performance.

Article Abstract

In today's digital era, advancements in technology have led to unparalleled levels of connectivity, but have also brought forth a new wave of cyber threats. Network Intrusion Detection Systems (NIDS) are crucial for ensuring the security and integrity of networked systems by identifying and mitigating unauthorized access and malicious activities. Traditional machine learning techniques have been extensively employed for this purpose due to their high accuracy and low false alarm rates. However, these methods often fall short in detecting sophisticated and evolving threats, particularly those involving subtle variations or mutations of known attack patterns. To address this challenge, our study presents the "Optimized Random Forest (Opt-Forest)," an innovative ensemble model that combines decision forest approaches with genetic algorithms (GAs) for enhanced intrusion detection. The genetic algorithms based decision forest construction offers notable benefits by traversing a wider exploration space and mitigating the risk of becoming stuck in local optima, resulting in the discovery of more accurate and compact decision trees. Leveraging advanced feature selection techniques, including Best-First Search, Particle Swarm Optimization (PSO), Evolutionary Search, and Genetic Search (GS), along with contemporary dataset, this research aims to enhance the adaptability and resilience of NIDS against modern cyber threats. We conducted a comprehensive evaluation of the proposed approach against several well-known machine learning models, including AdaBoostM1 (AbM1), K-nearest neighbor (KNN), J48-Decision Tree (J48), multilayer perceptron (MLP), stochastic gradient descent (SGD), naïve Bayes (NB), and logistic model tree (LMT). The comparative analysis demonstrates the effectiveness and superiority of our method across various performance metrics, highlighting its potential to significantly enhance the capabilities of network intrusion detection systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623070PMC
http://dx.doi.org/10.7717/peerj-cs.2472DOI Listing

Publication Analysis

Top Keywords

intrusion detection
16
network intrusion
12
ensemble model
8
advanced feature
8
feature selection
8
cyber threats
8
detection systems
8
machine learning
8
decision forest
8
genetic algorithms
8

Similar Publications

Emerging Trends in Neuroblastoma Diagnosis, Therapeutics, and Research.

Mol Neurobiol

January 2025

Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India.

This review explores the current understanding and recent advancements in neuroblastoma, one of the most common extracranial solid pediatric cancers, accounting for ~ 15% of childhood cancer-related mortality. The hallmarks of NBL, including angiogenesis, metastasis, apoptosis resistance, cell cycle dysregulation, drug resistance, and responses to hypoxia and ROS, underscore its complex biology. The tumor microenvironment's significance in disease progression is acknowledged in this study, along with the pivotal role of cancer stem cells in sustaining tumor growth and heterogeneity.

View Article and Find Full Text PDF

Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering.

Sci Rep

January 2025

Department of Software, Faculty of Artificial Intelligence and Software, Gachon University, Seongnam-si, 13120, Republic of Korea.

Network security is crucial in today's digital world, since there are multiple ongoing threats to sensitive data and vital infrastructure. The aim of this study to improve network security by combining methods for instruction detection from machine learning (ML) and deep learning (DL). Attackers have tried to breach security systems by accessing networks and obtaining sensitive information.

View Article and Find Full Text PDF
Article Synopsis
  • The increasing use of connected devices in smart homes has heightened security risks, particularly from Man-in-the-Middle (MitM) attacks, which can go undetected.
  • Traditional security methods struggle to manage these complex threats, highlighting the need for more advanced intrusion detection systems.
  • The AEXB Model, a hybrid deep learning approach combining AutoEncoder for feature extraction and XGBoost for classification, achieves 97.24% accuracy in detecting MitM attacks, while also enabling real-time threat responses and continuous protection.
View Article and Find Full Text PDF

As modern vehicles continue to evolve, advanced technologies are integrated to enhance the driving experience. A key enabler of this advancement is the Controller Area Network (CAN) bus, which facilitates seamless communication between vehicle components. Despite its widespread adoption, the CAN bus was not designed with security as a priority, making it vulnerable to various attacks.

View Article and Find Full Text PDF

The Internet of Things (IoT) and Industrial Internet of Things (IIoT) have drastically transformed industries by enhancing efficiency and flexibility but have also introduced substantial cybersecurity risks. The rise of zero-day attacks, which exploit unknown vulnerabilities, poses significant threats to these interconnected systems. Traditional signature-based intrusion detection systems (IDSs) are insufficient for detecting such attacks due to their reliance on pre-defined attack signatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!