Angle information assisting skeleton-based actions recognition.

PeerJ Comput Sci

National Engineering Laboratory for Cyber Science and Technology, Shangu Cyber Security Technology Company Limited, Zhengzhou, Henan, China.

Published: November 2024

In human skeleton-based action recognition, graph convolutional networks (GCN) have shown significant success. However, existing state-of-the-art methods struggle with complex actions, such as figure skating, where performance is often unsatisfactory. This issue arises from two main factors: the lack of shift, scale, and rotation invariance in GCN, making them especially vulnerable to perspective distortions in 2D coordinates, and the high variability in displacement velocity, which depends more on the athlete's individual capabilities than the actions themselves, reducing the effectiveness of motion information. To address these challenges, we propose a novel cosine stream to enhance the robustness of spatial features and introduce a Keyframe Sampling algorithm for more effective temporal feature extraction, eliminating the need for motion information. Our methods do not require modifications to the backbone. Experiments on the FSD-10, FineGYM, and NTU RGB+D datasets demonstrate a 2.6% improvement in Top-1 accuracy on the FSD-10 figure skating dataset compared to current state-of-the-art methods. The code has been made available at: https://github.com/Jiahao-Guan/pyskl_cosine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623218PMC
http://dx.doi.org/10.7717/peerj-cs.2523DOI Listing

Publication Analysis

Top Keywords

state-of-the-art methods
8
figure skating
8
angle assisting
4
assisting skeleton-based
4
skeleton-based actions
4
actions recognition
4
recognition human
4
human skeleton-based
4
skeleton-based action
4
action recognition
4

Similar Publications

Binary Transformer Based on the Alignment and Correction of Distribution.

Sensors (Basel)

December 2024

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.

Transformer is a powerful model widely used in artificial intelligence applications. It contains complex structures and has extremely high computational requirements that are not suitable for embedded intelligent sensors with limited computational resources. The binary quantization technology takes up less memory space and has a faster calculation speed; however, it is seldom studied for the lightweight transformer.

View Article and Find Full Text PDF

Attention-Based PSO-LSTM for Emotion Estimation Using EEG.

Sensors (Basel)

December 2024

Department of Information and Electronic Engineering, International Hellenic University, 57001 Thessaloniki, Greece.

Recent advances in emotion recognition through Artificial Intelligence (AI) have demonstrated potential applications in various fields (e.g., healthcare, advertising, and driving technology), with electroencephalogram (EEG)-based approaches demonstrating superior accuracy compared to facial or vocal methods due to their resistance to intentional manipulation.

View Article and Find Full Text PDF

Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control.

View Article and Find Full Text PDF

Wavelet-Driven Multi-Band Feature Fusion for RGB-T Salient Object Detection.

Sensors (Basel)

December 2024

School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China.

RGB-T salient object detection (SOD) has received considerable attention in the field of computer vision. Although existing methods have achieved notable detection performance in certain scenarios, challenges remain. Many methods fail to fully utilize high-frequency and low-frequency features during information interaction among different scale features, limiting detection performance.

View Article and Find Full Text PDF

Point Cloud Wall Projection for Realistic Road Data Augmentation.

Sensors (Basel)

December 2024

Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea.

Several approaches have been developed to generate synthetic object points using real LiDAR point cloud data for advanced driver-assistance system (ADAS) applications. The synthetic object points generated from a scene (both the near and distant objects) are essential for several ADAS tasks. However, generating points from distant objects using sparse LiDAR data with precision is still a challenging task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!