Recent advancements in facial expression synthesis using deep learning, particularly with Cycle-Consistent Adversarial Networks (CycleGAN), have led to impressive results. However, a critical challenge persists: the generated expressions often lack the sharpness and fine details of the original face, such as freckles, moles, or birthmarks. To address this issue, we introduce the Facial Expression Morphing (FEM) algorithm, a novel post-processing method designed to enhance the visual fidelity of CycleGAN-based outputs. The FEM method blends the input image with the generated expression, prioritizing the preservation of crucial facial details. We experimented with our method on the Radboud Faces Database (RafD) and evaluated employing the Fréchet Inception Distance (FID) standard benchmark for image-to-image translation and introducing a new metric, FSD (Facial Similarity Distance), to specifically measure the similarity between translated and real images. Our comprehensive analysis of CycleGAN, UNet Vision Transformer cycle-consistent GAN versions 1 (UVCGANv1) and 2 (UVCGANv2) reveals a substantial enhancement in image clarity and preservation of intricate details. The average FID score of 31.92 achieved by our models represents a remarkable 50% reduction compared to the previous state-of-the-art model's score of 63.82, showcasing the significant advancements made in this domain. This substantial enhancement in image quality is further supported by our proposed FSD metric, which shows a closer resemblance between FEM-processed images and the original faces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623074PMC
http://dx.doi.org/10.7717/peerj-cs.2438DOI Listing

Publication Analysis

Top Keywords

facial expression
12
expression morphing
8
visual fidelity
8
facial details
8
expression synthesis
8
substantial enhancement
8
enhancement image
8
facial
6
morphing enhancing
4
enhancing visual
4

Similar Publications

Skin cancer is one of the most prevalent malignancies in the world, with increasing incidence. In 2022, the World Health Organization estimated over 1.5 million new diagnoses of skin malignancies, primarily affecting the older population.

View Article and Find Full Text PDF

Background And Objective: Cardiovascular disease (CVD), one of the chronic non-communicable diseases (NCDs), is defined as a cardiac and vascular disorder that includes coronary heart disease, heart failure, peripheral arterial disease, cerebrovascular disease (stroke), congenital heart disease, rheumatic heart disease, and elevated blood pressure (hypertension). Having CVD increases the mortality rate. Emotional stress, an indirect indicator associated with CVD, can often manifest through facial expressions.

View Article and Find Full Text PDF

The relationships between facial expression and color affect human cognition functions such as perception and memory. However, whether these relationships influence selective attention and brain activity contributed to selective attention remains unclear. For example, reddish angry faces increase emotion intensity, but it is unclear whether brain activity and selective attention are similarly enhanced.

View Article and Find Full Text PDF

Like the lines themselves, concerns about facial wrinkles, particularly glabellar lines - the prominent furrows between the eyebrows - intensify with age. These lines can inadvertently convey negative emotions due to their association with negative facial expressions. We investigated the effects of repeated frowning on the development of temporary glabellar lines through the activation of the corrugator muscle.

View Article and Find Full Text PDF

Pain assessment in trigeminal neuralgia (TN) mouse models is essential for exploring its pathophysiology and developing effective analgesics. However, pain assessment methods for TN mouse models have not been widely studied, resulting in a critical gap in our understanding of TN. With the rapid advancement of deep learning, numerous pain assessment methods based on deep learning have emerged.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!