AI Article Synopsis

  • Glaucoma is a major cause of vision loss globally, highlighting the need for early detection, which this research addresses by using deep learning for automated diagnosis through retinal fundus photos.* -
  • The study introduces a new optic nerve head feature from OCT images and a deep learning classifier that can quickly differentiate between normal and abnormal eyes without manual input, improving the diagnostic process.* -
  • A new mixed loss function enhances the model's ability to deal with complex data and class imbalances, achieving outstanding accuracy (100%), specificity (99.8%), and sensitivity (99.2%), showcasing its potential for effective clinical application in glaucoma detection.*

Article Abstract

Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research explores the application of deep learning for automated glaucoma diagnosis using retinal fundus photographs. We introduce a novel cross-sectional optic nerve head (ONH) feature derived from optical coherence tomography (OCT) images to enhance existing diagnostic procedures. Our approach leverages deep learning to automatically detect key optic disc characteristics, eliminating the need for manual feature engineering. The deep learning classifier then categorizes images as normal or abnormal, streamlining the diagnostic process. Deep learning techniques have proven effective in classifying and segmenting retinal fundus images, enabling the analysis of a growing number of images. This study introduces a novel mixed loss function that combines the strengths of focal loss and correntropy loss to handle complex biomedical data with class imbalance and outliers, particularly in OCT images. We further refine a multi-task deep learning model that capitalizes on similarities across major eye-fundus activities and metrics for glaucoma detection. The model is rigorously evaluated on a real-world ophthalmic dataset, achieving impressive accuracy, specificity, and sensitivity of 100%, 99.8%, and 99.2%, respectively, surpassing state-of-the-art methods. These promising results underscore the potential of our deep learning algorithm for automated glaucoma diagnosis, with significant implications for clinical applications. By simultaneously addressing segmentation and classification challenges, our approach demonstrates its effectiveness in accurately identifying ocular diseases, paving the way for improved glaucoma diagnosis and early intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623275PMC
http://dx.doi.org/10.7717/peerj-cs.2186DOI Listing

Publication Analysis

Top Keywords

deep learning
28
glaucoma diagnosis
12
learning techniques
8
automated glaucoma
8
retinal fundus
8
oct images
8
deep
7
learning
7
glaucoma
5
images
5

Similar Publications

The scattering of tiny particles in the atmosphere causes a haze effect on remote sensing images captured by satellites and similar devices, significantly disrupting subsequent image recognition and classification. A generative adversarial network named TRPC-GAN with texture recovery and physical constraints is proposed to mitigate this impact. This network not only effectively removes haze but also better preserves the texture information of the original remote sensing image, thereby enhancing the visual quality of the dehazed image.

View Article and Find Full Text PDF

This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.

View Article and Find Full Text PDF

Failure to predict stroke promptly may lead to delayed treatment, causing severe consequences like permanent neurological damage or death. Early detection using deep learning (DL) and machine learning (ML) models can enhance patient outcomes and mitigate the long-term effects of strokes. The aim of this study is to compare these models, exploring their efficacy in predicting stroke.

View Article and Find Full Text PDF

The study aims to address the critical issue of toxic side effects resulting from drug combinations, which can significantly increase health risks, clinical complications, and lead to drug being withdrawn from the market. A model named TSEDDI (toxic side effects of drug-drug interaction) has been developed to improve the identification of drug pairs that may induce toxicity or adverse reactions. By utilizing drug chemical structures and diverse proteins, we employ a convolutional neural network (CNN) to extract features from molecular images, enzyme proteins, transporter proteins, and target proteins.

View Article and Find Full Text PDF

Lithofacies classification and identification are of great significance in the exploration and evaluation of tight sandstone reservoirs. Existing methods of lithofacies identification in tight sandstone reservoirs face issues such as lengthy manual classification, strong subjectivity of identification, and insufficient sample datasets, which make it challenging to analyze the lithofacies characteristics of these reservoirs during oil and gas exploration. In this paper, the Fuyu oil formation in the Songliao Basin is selected as the target area, and an intelligent method for recognizing the lithophysics reservoirs in tight sandstone based on hybrid multilayer perceptron (MLP) and multivariate time series (MTS-Mixers) is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!