There is little evidence of the acute effect of random practice, performed by solely varying the intensity but not the task itself, as compared to block practice, i.e. when one task is repeated in a constant manner. This study aimed to examine the acute neuromuscular effects of physical exercise consisting of repeated jumps of randomized length. Fifteen healthy young participants completed 2 separate sessions of 90 minutes. They did 20 minutes of fatiguing exercise, consisting of 100 repeated standing long jumps (SLJ), in two different manners: one session with targeted jump length kept constant (CO), and one with targeted jump length being varied and unpredictable (RA). Pre- and post-tests were conducted before and immediately after, including measurements of Countermovement Jump (CMJ), SLJ, leg extension maximal voluntary isometric contractions (MViC), EMG activities of leg muscles and patellar tendon reflex amplitude (T-reflex: strike force and evoked force). Results showed that performances decreased after the repeated SLJs, independently of the condition (MViC decreased from 448 ± 118 N to 399 ± 122 N; CMJ decreased from 36.7 ± 7.2 cm to 34.6 ± 6.6 cm). EMG during MViC decreased by 21 ± 28 % from pre- to post-intervention. T-reflex decreased after both conditions ([Force/Strike] ratio decreased by 38 ± 69 % from pre to post). Subjective measures showed a greater sense of personal performance and enjoyment after the RA session. Results suggest that a randomly organized intensity of effort led to a similar decrease in physical performance compared to constant intensity when the session loads were matched. It also led to similar fatigue of the neuromuscular system as shown by T-reflexes and EMG measures. Nonetheless, random practice presents the benefit of being markedly more appreciated by participants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622049PMC
http://dx.doi.org/10.52082/jssm.2024.895DOI Listing

Publication Analysis

Top Keywords

acute neuromuscular
8
repeated standing
8
standing long
8
long jumps
8
random practice
8
exercise consisting
8
targeted jump
8
jump length
8
mvic decreased
8
decreased
6

Similar Publications

Cerebral venous sinus thrombosis is an uncommon sequela of low intracranial pressure, which may result from a lumbar puncture (LP). We describe a case of a patient in their 40s presenting with 48 hours of persistent headache following intrathecal administration of nusinersen for spinal muscular atrophy (SMA) type 3. There were no focal neurological signs or symptoms apart from baseline symmetrical proximal limb weakness attributed to SMA.

View Article and Find Full Text PDF

Late onset cerebellar ataxia syndrome after non-paraneoplastic Lambert-Eaton myasthenic syndrome: a case study.

BMC Neurol

January 2025

Neuromuscular Neurology, Advocate Health, 1850 Dempster Street, Park Ridge, IL, 60068, USA.

This is an unusual case of voltage gated calcium channel (VGCC) antibodies leading to two distinct and chronologically separated neurologic syndromes without the presence of an underlying neoplasm. Lambert Eaton Myasthenic Syndrome (LEMS) presented five years prior to cerebellar ataxia. Both LEMS and cerebellar ataxia were responsive to treatment, but not the same therapy.

View Article and Find Full Text PDF
Article Synopsis
  • A new technique called high-PAS combines high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) to potentially enhance motor function in patients with incomplete spinal cord injuries.
  • The interstimulus interval (ISI) in high-PAS allows for flexibility, making it easier to implement in clinical settings where precise timing is tough, but this also creates challenges for measuring its effectiveness.
  • Research with ten healthy participants showed that high-PAS improved motor-evoked potentials (MEPs) and significantly increased spinal excitability (measured by H-reflex amplitudes) during spinal-targeted sessions, but not in cortical-targeted sessions.
View Article and Find Full Text PDF

Acute Responses of Low-Load Resistance Exercise with Blood Flow Restriction.

J Funct Morphol Kinesiol

December 2024

Patriot Performance Laboratory, Frank Pettrone Center for Sports Performance, George Mason University, Fairfax, VA 22030, USA.

Blood flow restriction (BFR) is a popular resistance exercise technique purported to increase metabolic stress and augment training adaptations over time. However, short-term use may lead to acute neuromuscular fatigue and higher exertion ratings. The purpose of the current study was to examine acute physiological responses to low-load resistance exercise utilizing BFR compared to higher-load, non-BFR resistance exercise.

View Article and Find Full Text PDF

Changes in H-reflex, V-wave and contractile properties of the plantar flexors following concurrent exercise sessions - the acute interference effect.

J Appl Physiol (1985)

December 2024

Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal, Estrada da Costa, 1499-002, Cruz Quebrada, Dafundo, Portugal.

The interaction between muscle strength and endurance impacts athletic performance. Integrating both modalities into concurrent exercise (CE) is challenging due to the interference effect. This study explored the acute effects of resistance-only (R), endurance-only (E) and CE sessions on voluntary muscle strength, evoked neurophysiological parameters and contractile properties of the plantar flexors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!