Photosynthetic reaction center/graphene bio-hybrid for low-power optoelectronics.

Photosynthetica

Institute of Medical Physics and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary.

Published: November 2023

Photosynthetic reaction center (pRC) purified from 2.4.1 purple bacteria was deposited on a graphene carrier exfoliated from the liquid phase and layered on the surface of SiO/Si substrate for optoelectronic application. Light-induced changes in the drain-source current . gate voltage are demonstrated. Dried photosynthetic reaction centers/graphene composite on SiO/Si shows a photochemical/-physical activity, as a result of interaction with the current flow in the graphene carrier matrix. The current changes are sensitive to light, due to the contribution from the charge separation in the pRC, and to the applied gate and drain-source voltages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586844PMC
http://dx.doi.org/10.32615/ps.2023.041DOI Listing

Publication Analysis

Top Keywords

photosynthetic reaction
12
graphene carrier
8
reaction center/graphene
4
center/graphene bio-hybrid
4
bio-hybrid low-power
4
low-power optoelectronics
4
optoelectronics photosynthetic
4
reaction center
4
center prc
4
prc purified
4

Similar Publications

Light-induced electron spin qubit coherences in the purple bacteria reaction center protein.

Phys Chem Chem Phys

January 2025

Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.

Photosynthetic reaction center proteins (RCs) provide ideal model systems for studying quantum entanglement between multiple spins, a quantum mechanical phenomenon wherein the properties of the entangled particles become inherently correlated. Following light-generated sequential electron transfer, RCs generate spin-correlated radical pairs (SCRPs), also referred to as entangled spin qubit (radical) pairs (SQPs). Understanding and controlling coherence mechanisms in SCRP/SQPs is important for realizing practical uses of electron spin qubits in quantum sensing applications.

View Article and Find Full Text PDF

This study aimed to explore the mechanism by which Zn retards Fe toxicity by analyzing the morphological, photosynthetic, and chloroplast physiological parameters of wheat seedlings treated with either single or combined Zn and Fe. Different behavior of the seedlings was observed under untreated and treated conditions. The most discriminating quantitative traits were associated with leaf area, biomass dry mass and fresh mass, net photosynthetic rate, intercellular CO concentration, stomatal conductance, transpiration rate of seedlings, Hill reaction, Mg-ATPase and Ca-ATPase activities, malondialdehyde and O contents, and glutathione reductase, ascorbate peroxidase, peroxidase, and superoxide dismutase activities and their gene expression in the seedling chloroplast.

View Article and Find Full Text PDF

Molecular dynamics of photosynthetic electron flow in a biophotovoltaic system.

Environ Sci Ecotechnol

January 2025

Systems Biotechnology Group, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.

Biophotovoltaics (BPV) represents an innovative biohybrid technology that couples electrochemistry with oxygenic photosynthetic microbes to harness solar energy and convert it into electricity. Central to BPV systems is the ability of microbes to perform extracellular electron transfer (EET), utilizing an anode as an external electron sink. This process simultaneously serves as an electron sink and enhances the efficiency of water photolysis compared to conventional electrochemical water splitting.

View Article and Find Full Text PDF

The Q-Band Energetics and Relaxation of Chlorophylls and as Revealed by Visible-to-Near Infrared Time-Resolved Absorption Spectroscopy.

J Phys Chem Lett

January 2025

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China.

Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (-TA) absorption spectroscopy in 430-1,700 nm to Chls and in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the B ← Q and B ← Q transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Q-state energy that lies 1,000 ± 400 and 600 ± 400 cm above the Q-state for Chls and , respectively.

View Article and Find Full Text PDF

Enhancing crop yields to ensure food security by optimizing photosynthesis.

J Genet Genomics

January 2025

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau. Therefore, it is essential to accelerate advancements in photosynthesis, the fundamental process by which plants convert light energy into chemical energy, to further enhance crop yields. Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!