Role of Epigenetic Changes in the Pathophysiology of Diabetic Kidney Disease.

Glomerular Dis

Department of Internal Medicine III, University Hospital Jena, Jena, Germany.

Published: November 2024

Background: Diabetic kidney disease (DKD) is a global health issue. Epigenetic changes play an important role in the pathogenesis of this disease.

Summary: DKD is currently the leading cause of kidney failure worldwide. Although much is known about the pathophysiology of DKD, the research field of epigenetics is relatively new. Several recent studies have demonstrated that diabetes-induced dysregulation of epigenetic mechanisms alters the expression of pathological genes in kidney cells. If these changes persist for a long time, the so-called "metabolic memory" could be established. In this review, we highlight diabetes-induced epigenetic modifications associated with DKD. While there is a substantial amount of literature on epigenetic changes, only a few studies describe the underlying molecular mechanisms. Detailed analyses have shown that epigenetic changes play an important role in known pathological features of DKD, such as podocyte injury, fibrosis, accumulation of extracellular matrix, or oxidative injury, all of which contribute to the pathophysiology of disease. The transforming growth factor-β plays a key role as it is involved in all-mentioned epigenetic types of regulation.

Key Messages: Epigenetic is crucial for the development and progression of DKD, but the detailed molecular mechanisms have to be further analyzed more in detail.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623970PMC
http://dx.doi.org/10.1159/000541923DOI Listing

Publication Analysis

Top Keywords

epigenetic changes
16
diabetic kidney
8
kidney disease
8
changes play
8
play role
8
molecular mechanisms
8
epigenetic
7
dkd
6
changes
5
role
4

Similar Publications

ZAR1/2-Regulated Epigenetic Modifications are Essential for Age-Associated Oocyte Quality Maintenance and Zygotic Activation.

Adv Sci (Weinh)

January 2025

Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.

The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.

View Article and Find Full Text PDF

Targeted Mitochondrial Function for Cardiac Fibrosis: an Epigenetic Perspective.

Free Radic Biol Med

January 2025

Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601. Electronic address:

Mitochondria, commonly referred to as "energy factories"of cells, play a crucial role in the function and survival of cardiomyocytes. However, as research on cardiac fibrosis has advanced, mitochondrial dysfunction(including changes in energy metabolism, calcium ion imbalance, increased oxidative stress, and apoptosis)is now recognized as a significant pathophysiological pathway involved in cardiac remodeling and progression, which also negatively affects the function and structure of the heart. In recent years, research focusing on targeting mitochondria has gained significant attention, offering new approaches for treating cardiac fibrosis.

View Article and Find Full Text PDF

Recent advances in biomarkers for senescence: Bridging basic research to clinic.

Geriatr Gerontol Int

January 2025

Department of Advanced Senotherapeutics and Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.

In this review, we review the current status of biomarkers for aging and possible perspectives on anti-aging or rejuvenation from the standpoint of biomarkers. Aging is observed in all cells and organs, and we focused on research into senescence in the skin, musculoskeletal system, immune system, and cardiovascular system. Commonly used biomarkers include SA-βgal, cell-cycle markers, senescence-associated secretory phenotype (SASP) factors, damage-associated molecular patterns (DAMPs), and DNA-damage-related markers.

View Article and Find Full Text PDF

Efficacy and cost-effectiveness of an ACT and compassion-based intervention for women with breast cancer: study protocol of two randomised controlled trials {1}.

Trials

January 2025

Center for Research in Neuropsychology and Cognitive and Behavioral Intervention, Faculty of Psychology and Education Sciences, University of Coimbra, Coimbra, Portugal.

Background: Breast cancer is the most diagnosed cancer in women worldwide and carries a considerable psychosocial burden. Interventions based on Acceptance and Commitment Therapy (ACT) and compassion-based approaches show promise in improving adjustment and quality of life in people with cancer. The Mind programme is an integrative ACT and compassion-based intervention tailored for women with breast cancer, which aims to prepare women for survivorship by promoting psychological flexibility and self-compassion.

View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!