Background: Growing evidence suggests that chronic inflammation, resulting from intricate immune system interactions, significantly contributes to the onset of psychiatric disorders. Observational studies have identified a link between immunoglobulin G (IgG) N-glycosylation and various psychiatric conditions, but the causality of these associations remains unclear.
Methods: Genetic variants for IgG N-glycosylation traits and psychiatric disorders were obtained from published genome-wide association studies. The inverse-variance-weighted (IVW) method, MR-Egger, and weighted median were used to estimate causal effects. The Cochran's Q test, MR-Egger intercept test, leave-one-out analyses, and MR-PRESSO global test were used for sensitivity analyses.
Results: In the Psychiatric Genomics Consortium (PGC) database, genetically predicted IGP7 showed a protective role in schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP), while elevated IGP34, and IGP57 increased SCZ risk. High levels of IGP21 were associated with an increased risk of post-traumatic stress disorder (PTSD), while elevated levels of IGP22 exhibited a causal association with a decreased risk of attention-deficit/hyperactivity disorder (ADHD). No causal relationship between IgG N-glycan traits and autism spectrum disorder (ASD) and no evidence of reverse causal associations was found.
Conclusion: Here, we demonstrate that IgG N-glycan traits have a causal relationship with psychiatric disorders, especially IGP7's protective role, offering new insights into their pathogenesis. Our findings suggest potential strategies for predicting and intervening in psychiatric disorder risk through IgG N-glycan traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622602 | PMC |
http://dx.doi.org/10.3389/fpsyt.2024.1431942 | DOI Listing |
medRxiv
December 2024
School of Nutritional Sciences and Wellness, BIO5, University of Arizona, Tucson, USA.
Background/objective: In a subset of participants from the CALERIE Phase 2 study we evaluated the effects of 2y of ~25% Calorie Restriction (CR) diet on IgG N-glycosylation (GlycAge), plasma and complement C3 N-glycome as markers of aging and inflammaging.
Methods: Plasma samples from 26 participants in the CR group who completed the CALERIE2 trial and were deemed adherent to the intervention (~>10 % CR at 12 mo) were obtained from the NIA AgingResearchBiobank. Glycomic investigations using UPLC or LC-MS analyses were conducted on samples from baseline (BL), mid-intervention (12 mo) and post-intervention (24 mo), and changes resulting from the 2y CR intervention were examined.
Front Psychiatry
November 2024
Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Background: Growing evidence suggests that chronic inflammation, resulting from intricate immune system interactions, significantly contributes to the onset of psychiatric disorders. Observational studies have identified a link between immunoglobulin G (IgG) N-glycosylation and various psychiatric conditions, but the causality of these associations remains unclear.
Methods: Genetic variants for IgG N-glycosylation traits and psychiatric disorders were obtained from published genome-wide association studies.
J Am Chem Soc
December 2024
Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands.
Here, we employed a variety of mass spectrometry (MS)-based approaches, both (glyco)peptide-centric and protein-centric, to resolve the complex glycoproteoform landscape of recombinant IgA1 produced in HEK293 cells. These key immunoglobulins harbor several - and -glycosylation sites, making them considerably more heterogeneous than their IgG counterparts. We provide quantitative data on the occupancy and glycan composition for each IgA1 glycosylation site.
View Article and Find Full Text PDFACS Cent Sci
November 2024
Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
Although immunoglobulin G (IgG) harbors just one -glycosylation site per heavy chain, this glycosylation plays a key role in modulating its function. In human serum, IgG is classified into four subclasses (IgG1, IgG2, IgG3, IgG4), each characterized by unique features in their sequences, disulfide bridges and glycosylation signatures. While protein glycosylation is typically studied at the compositional level, this severely underestimates the complexity of the molecules involved.
View Article and Find Full Text PDFMolecules
November 2024
Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!