The controlled release of immunostimulatory agents represents a promising strategy to enhance vaccine efficacy while minimizing side effects. This study aimed to improve the efficacy of the RBD-Fc-based COVID-19 vaccine through combining of an iNKT cell agonist and a TLR7/8 agonist using covalent conjugation and temporal delivery. We hypothesized that these combinations would yield a more balanced Th1/Th2 immune response. For covalent conjugation, we employed an uncleavable linker and a self-immolative disulfide linker to conjugate α-galactosylceramide (αGC) to imidazoquinoline (IMDQ). The αGC-SS-IMDQ-Ac conjugate, designed with a prodrug strategy for controlled TLR7/8 agonist release, elicited a higher IFN-γ/IL-4 T cell response ratio than individual adjuvants or their admixture. In the temporal delivery approach, administering IMDQ followed by αGC after 2 h resulted in the highest IgG2a/IgG1 ratio, significantly surpassing other groups. A 6 h delay between glycolipid and IMDQ injections yielded balanced IgG responses, enhancing IgG, IgG1, and IgG2a levels synergistically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.4c01801 | DOI Listing |
BMC Infect Dis
December 2024
Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco.
To assess the impact of the SARS-CoV-2 booster dose on the immune response against COVID-19, we conducted a cross-sectional study in the Casablanca-Settat region of Morocco. The study included 2,802 participants from 16 provinces, all of whom had received three doses of a SARS-CoV-2 vaccine. IgG antibodies targeting the S1 RBD subunit of the SARS-CoV-2 spike protein were quantified using the SARS-CoV-2 IgG II Quant assay and measured on the Abbott Architect i2000SR instrument.
View Article and Find Full Text PDFVaccine
December 2024
Scientific Advisor and Emeritus Director, National Influenza Centre, Valladolid, 47010, Spain.
Clin Neurol Neurosurg
December 2024
Department of Ophthalmology, Hamad Medical Corporations, Doha, Qatar. Electronic address:
Virology
December 2024
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Departamento de Biotecnología y Bioingeniería, Av. Instituto Politécnico Nacional 2508, Mexico City, 07360, Mexico; CINVESTAV, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Mexico. Electronic address:
COVID-19 infections continue due to accessibility barriers to vaccines and the emergence of SARS-CoV-2 variants. An effective, safe, accessible, and broad-spectrum vaccine is still needed to control the disease. We developed a multivalent protein subunit vaccine comprising antigens designed from a non-N-glycosylated region of the receptor-binding domain of the spike protein of SARS-CoV-2.
View Article and Find Full Text PDFImmunol Rev
December 2024
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!