The ability to deliver protein therapeutics in a minimally invasive, safe, and sustained manner, without resorting to viral delivery systems, will be crucial for treating a wide range of chronic injuries and diseases. Among these challenges, achieving axon regeneration and functional recovery post-injury or disease in the central nervous system remains elusive to most clinical interventions, constantly calling for innovative solutions. Here, a thermally responsive hydrogel system utilizing recombinant spider silk protein (spidroin) is developed. The protein solution undergoes rapid sol-gel transition at an elevated temperature (37 °C) following brief sonication. This thermally triggered gelation confers injectability to the system. Leveraging SpyTag/SpyCatcher chemistry, the hydrogel, composed of SpyTag-fusion spidroin, can be functionalized with diverse SpyCatcher-fusion bioactive motifs, such as neurotrophic factors (e.g., ciliary neurotrophic factor) and cell-binding ligands (e.g., laminin), rendering it well-suited for neuronal culturing. More importantly, the intravitreous injection of the protein materials decorated with SpyCatcher-fusion CNTF into the vitreous body after optic nerve injury leads to prolonged JAK/STAT3 signaling, increased neuronal survival, and enhanced axon regeneration. This study illustrates a generalizable material system for injectable and sustained delivery of protein therapeutics for neuroprotection and regeneration, with the potential for extension to other chronic diseases and injuries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202413957DOI Listing

Publication Analysis

Top Keywords

thermally responsive
8
recombinant spider
8
spider silk
8
silk protein
8
protein therapeutics
8
axon regeneration
8
protein
6
clickable thermally
4
responsive hydrogels
4
hydrogels enabled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!