A first-in-class vaccine adjuvant delivery system, Mn-ZIF, is developed by incorporating manganese (Mn) into the zinc-containing zeolitic-imidazolate framework-8 (ZIF-8). The mixed metal approach, which allowed for tunable Mn doping, is made possible by including a mild reducing agent in the reaction mixture. This approach allows up to 50% Mn, with the remaining 50% Zn within the ZIF. This multivariate approach exhibits significantly decreased cytotoxicity compared to ZIF-8. The porous structure of Mn-ZIF enables the co-delivery of the STING agonist cyclic di-adenosine monophosphate (CDA) through post-synthetic loading, forming CDA@Mn-ZIF. The composite demonstrated enhanced cellular uptake and synergistic activation of the cGAS-STING pathway, producing proinflammatory cytokines and activating antigen-presenting cells (APCs). In a preclinical Mycobacterium tuberculosis (Mtb) model, CDA@Mn-ZIF formulates with the CysVac2 fusion protein elicited a potent antigen-specific T-cell response and significantly reduced the mycobacterial burden in the lungs of infected mice. These findings highlight the potential of CDA@Mn-ZIF as a promising adjuvant for subunit vaccines, offering a novel approach to enhancing vaccine efficacy and protection against infectious diseases such as tuberculosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202402358DOI Listing

Publication Analysis

Top Keywords

zn-doped multivariate
4
multivariate metal-organic
4
metal-organic framework
4
framework metalloimmunological
4
metalloimmunological adjuvant
4
adjuvant promote
4
promote protection
4
protection tuberculosis
4
tuberculosis infection
4
infection first-in-class
4

Similar Publications

A first-in-class vaccine adjuvant delivery system, Mn-ZIF, is developed by incorporating manganese (Mn) into the zinc-containing zeolitic-imidazolate framework-8 (ZIF-8). The mixed metal approach, which allowed for tunable Mn doping, is made possible by including a mild reducing agent in the reaction mixture. This approach allows up to 50% Mn, with the remaining 50% Zn within the ZIF.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the remineralization ability of an etch-and-rinse Zn-doped resin applied on caries-affected dentin (CAD). CAD surfaces were subjected to: (i) 37% phosphoric acid (PA) or (ii) 0.5M ethylenediaminetetraacetic acid (EDTA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!