3D-Bioprinting for Precision Microtissue Engineering: Advances, Applications, and Prospects.

Adv Healthc Mater

Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.

Published: December 2024

Microtissues, engineered to emulate the complexity of human organs, are revolutionizing the fields of regenerative medicine, disease modelling, and drug screening. Despite the promise of traditional microtissue engineering, it has yet to achieve the precision required to fully replicate organ-like structures. Enter 3D bioprinting, a transformative approach that offers unparalleled control over the microtissue's spatial arrangement and mechanical properties. This cutting-edge technology enables the detailed layering of bioinks, crafting microtissues with tissue-like 3D structures. It allows for the direct construction of organoids and the fine-tuning of the mechanical forces vital for tissue maturation. Moreover, 3D-printed devices provide microtissues with the necessary guidance and microenvironments, facilitating sophisticated tissue interactions. The applications of 3D-printed microtissues are expanding rapidly, with successful demonstrations of their functionality in vitro and in vivo. This technology excels at replicating the intricate processes of tissue development, offering a more ethical and controlled alternative to traditional animal models. By simulating in vivo conditions, 3D-printed microtissues are emerging as powerful tools for personalized drug screening, offering new avenues for pharmaceutical development and precision medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202403781DOI Listing

Publication Analysis

Top Keywords

microtissue engineering
8
drug screening
8
3d-printed microtissues
8
microtissues
5
3d-bioprinting precision
4
precision microtissue
4
engineering advances
4
advances applications
4
applications prospects
4
prospects microtissues
4

Similar Publications

Cartilaginous microtissues exhibit extreme resilience under compression with size-dependent mechanical properties.

Biomaterials

January 2025

Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Skeletal Biology and Engineering Research, KU Leuven, ON1 Herestraat 49, PB 813, 3000, Leuven, Belgium. Electronic address:

Self-assembled cartilaginous microtissues provide a promising means of repairing challenging skeletal defects and connective tissues. However, despite their considerable promise in tissue engineering, the mechanical response of these engineered microtissues is not well understood. Here we examine the mechanical and viscoelastic response of progenitor cell aggregates formed from human primary periosteal cells and the resulting cartilaginous microtissues under large deformations as might be encountered in vivo.

View Article and Find Full Text PDF

Microfluidic Technologies in Advancing Cancer Research.

Micromachines (Basel)

November 2024

Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.

This review explores the significant role of microfluidic technologies in advancing cancer research, focusing on the below key areas: droplet-based microfluidics, organ-on-chip systems, paper-based microfluidics, electrokinetic chips, and microfluidic chips for the study of immune response. Droplet-based microfluidics allows precise manipulation of cells and three-dimensional microtissues, enabling high-throughput experiments that reveal insights into cancer cell migration, invasion, and drug resistance. Organ-on-chip systems replicate human organs to assess drug efficacy and toxicity, particularly in the liver, heart, kidney, gut, lung, and brain.

View Article and Find Full Text PDF
Article Synopsis
  • Histology is crucial for examining tissue structure and cell details, but standard methods for cryosectioning small tissues like organoids lack efficiency and cost-effectiveness, hindering analysis.
  • The adapted HistoBrick method uses an optimal embedding mixture of 8% PEGDA and 2.5% gelatine, providing support for fragile samples during cryosectioning and preserving delicate structures of human retinal organoids.
  • Using these PEGDA-gelatine HistoBricks, researchers monitored retinal organoid development over time, finding that photoreceptor cell bodies were sustained for up to 98 weeks, although outer segments diminished, making this approach valuable for increased throughput in tissue studies and research.
View Article and Find Full Text PDF

Small spheroids for head and neck cartilage tissue engineering.

Sci Rep

December 2024

Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

The demand for cartilage reconstruction in the head and neck region arises frequently due to trauma, malignancies, and hereditary diseases. Traditional tissue engineering produces cartilage from a small biopsy by combining biomaterials and expanded cells. However, this top-down approach is associated with several limitations, including the non-uniform distribution of cells, lack of physiological cell-cell and cell-matrix interactions, and compromised mechanical properties and tissue architecture.

View Article and Find Full Text PDF

Biomimetic gastric microtissue electrochemical biosensors for ovalbumin detection.

Biosens Bioelectron

March 2025

College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China. Electronic address:

An innovative integrated three-dimensional (3D) bioprinted gastric microtissue electrochemical biosensor was developed in this study for the detection of allergen ovalbumin (OVA). In this system, OVA triggers the release of histamine from gastric microtissue, which then undergoes a redox reaction on the electrode surface, leading to an increase in the peak current. Gelatin methacrylate hydrogel serves as a scaffold for the 3D culture of RBL-2H3 and PC-12 cells for partially restoring allergic reactions in the human body in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!