Extracellular vesicles (EVs) possess the characteristics of their parent cells, based on which various studies have actively investigated treatments for diseases using mesenchymal stem cell-derived EVs due to their regenerative activity. Furthermore, in recent years, there have been significant efforts to engineer EVs to improve their native activities and integrate additional functions. Although both endogenous and exogenous methods are used for engineering EVs, endogenous methods may pose the problem of administering substances to cells undergoing metabolic changes, which can cause potential side effects. In addition, exogenous methods may have the limitation of losing beneficial factors inside EVs due to membrane disruption during engineering processes. Surface modification of EVs may also impair efficiency due to the presence of proteins on the EV surface. Therefore, in this study, a stable and efficient engineering method was achieved through the ethanol-mediated hybridization of EVs and functionalized lipid nanoparticles (LNPs) with a fusogenic lipid component. During hybridization, the internal bioactive factors and targeting moiety were maintained to possess the characteristics of both LNPs and EVs. The Ab-Hybrid, which was successfully synthesized through hybridization with nicotinamide-encapsulated and Col2A1 antibody-modified liposome and Transforming growth factor-β1 (TGF-β1)overexpressed EVs, was administered to osteoarthritis (OA)-induced rats undergoing the destabilization of the medial meniscus surgery. Ultimately, the Ab-Hybrid demonstrated excellent chondroprotective and anti-inflammatory effects with targeting and long-lasting properties in OA lesions. We anticipate that this approach for manufacturing hybrid particles will serve as a valuable EV engineering method and a versatile platform technology applicable to various diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c07992 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656835 | PMC |
BMC Genomics
December 2024
Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain.
Background: Extracellular vesicles (EVs) are essential for cell-to-cell communication because they transport functionally active molecules, including proteins, RNA, and lipids, from secretory cells to nearby or distant target cells. Seminal plasma contains a large number of EVs (sEVs) that are phenotypically heterogeneous. The aim of the present study was to identify the RNA species contained in two subsets of porcine sEVs of different sizes, namely small sEVs (S-sEVs) and large sEVs (L-sEVs).
View Article and Find Full Text PDFSci Rep
December 2024
School of Management, Shenyang University of Technology, Shenyang, 100870, China.
This study presents a novel framework for advancing sustainable urban logistics and distribution systems, with a pivotal focus on fast charging and power exchange modalities as the cornerstone of our research endeavors. Our central contribution encompasses the formulation of an innovative electric vehicle path optimization model, whose paramount objective is to minimize overall operational costs. Integrating V2G technology, we facilitate sophisticated slow charging and discharging management of EVs upon their return to distribution centers, enhancing resource utilization.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Power Electrical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
With increasing worldwide attention on environmental sustainability, microgrids that harness renewable sources have become more prominent. The changing characteristics of renewable energy sources and energy demand's unpredictable patterns might cause disruptions in the sustainable working of microgrids. Moreover, EVs (electric vehicles), being dynamic loads, might significantly affect the security administration of the microgrid.
View Article and Find Full Text PDFTrends Cell Biol
December 2024
Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France. Electronic address:
Extracellular vesicles (EVs) are small membranous carriers of protein, lipid, and nucleic acid cargoes and play a key role in intercellular communication. Recent work has revealed the previously under-recognized participation of endoplasmic reticulum (ER)-associated proteins (ERAPs) during EV secretion, using pathways reminiscent of viral replication and secretion. Here, we present highlights of the literature involving ER/ERAPs in EV biogenesis and propose mechanistic parallels with ERAPs exploited during viral infections.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain.
Epsilon toxin (ETX) from is a pore-forming toxin (PFT) that crosses the blood-brain barrier and binds to myelin structures. In in vitro assays, ETX causes oligodendrocyte impairment, subsequently leading to demyelination. In fact, ETX has been associated with triggering multiple sclerosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!