In this symposium, we introduce a collection of reviews that delve into the diverse clinically relevant aspects of the placenta and umbilical cord. The symposium addresses placenta previa and abruption; pathology, genetics, and imaging of the placenta; infections of the placenta; and ischemic placental disease. The umbilical cord's essential function as a fetal lifeline is explored, with an emphasis on the clinical repercussions of its dysfunction, including vasa previa and other umbilical cord abnormalities. This curated collection of reviews, which synthesizes the placenta's and umbilical cord's fundamental role in maternal-fetal health, underscores the clinical importance of these structures in pregnancy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/GRF.0000000000000920 | DOI Listing |
Stem Cell Res Ther
December 2024
Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, P.R. China.
Background: hucMSC-exosomes can be engineered to strengthen their therapeutic potential, and the present study aimed to explore whether hypoxic preconditioning can enhance the angiogenic potential of hucMSC-exosomes in an experimental model of POF.
Methods: Primary hucMSCs and ROMECs were isolated from fresh tissue samples and assessed through a series of experiments. Exosomes were isolated from hucMSCs under normoxic or hypoxic conditions (norm-Exos and hypo-Exos, respectively) and then characterized using classic experimental methods.
Arch Orthop Trauma Surg
December 2024
Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA.
Core decompression was developed as a joint-preserving procedure for patients with early-stage osteonecrosis of the femoral head. Previous studies indicated a high success rate that outperforms nonoperative management of pre-collapse hips. The traditional single-tunnel core decompression technique uses a cannulated drill bit inserted into the lateral cortex of the proximal femur.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Beijing Institute of Radiation Medicine, Beijing, 100850, China.
Background: Radiation-induced heart disease (RIHD) is one of the most serious complications of radiation therapy (RT) for thoracic tumors, and new interventions are needed for its prevention and treatment. Small extracellular vesicles (sEVs) from stem cells have attracted much attention due to their ability to repair injury. However, the role of umbilical cord mesenchymal stem cell (UCMSC)-derived sEVs in protecting cardiac organoids from radiation-induced injury and the underlying mechanisms are largely unknown.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Department of General Surgery, Geriatric Hospital of Nanjing Medical University, Nanjing, 210000, China.
Background: Chronic atrophic gastritis (CAG) is a chronic disease of the gastric mucosa characterized by a reduction or an absolute disappearance of the original gastric glands, possibly replaced by pseudopyloric fibrosis, intestinal metaplasia, or fibrosis. CAG develops progressively into intestinal epithelial metaplasia, dysplasia, and ultimately, gastric cancer. Epidemiological statistics have revealed a positive correlation between the incidence of CAG and age.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China.
Background: Spinal cord injury (SCI) inflicts a severe burden on patients and lacks effective treatments. Owing to the poor regenerative capabilities of endogenous oligodendrocyte precursor cells (OPCs) following SCI, there is a growing interest in alternative sources, such as human umbilical cord mesenchymal stem cells (HUCMSCs). TET3 is a key DNA demethylase that plays an important role in neural differentiation, but its role in OPC formation is not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!