Gene Expression by a Model Fungus in the Ascomycota Provides Insight Into the Decay of Fungal Necromass.

Environ Microbiol

Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Twin Cities, Minnesota, USA.

Published: December 2024

AI Article Synopsis

  • Dead fungal cells, referred to as necromass, contribute significantly to long-term soil carbon pools, but the genes responsible for their decomposition are not well understood.
  • * The study focused on the fungus Trichoderma reesei and its response to low and high melanin levels in the necromass of another fungus, Hyaloscypha bicolor, revealing over 100 up-regulated genes for carbohydrate-active enzymes (CAZymes) in the presence of necromass compared to glucose.
  • * Differential expression of specific genes related to proteases and laccases was noted, particularly linked to the breakdown of melanin, offering insights into the factors affecting carbon turnover rates in this underexplored area of soil biology.

Article Abstract

Dead fungal cells, known as necromass, are increasingly recognised as significant contributors to long-term soil carbon pools, yet the genes involved in necromass decomposition are poorly understood. In particular, how microorganisms degrade necromass with differing initial cell wall chemical compositions using carbohydrate-active enzymes (CAZymes) has not been well studied. Based on the frequent occurrence and high abundance of the fungal genus Trichoderma on decaying fungal necromass in situ, we grew Trichoderma reesei RUT-C30 on low and high melanin necromass of Hyaloscypha bicolor (Ascomycota) in liquid cultures and assessed T. reesei gene expression relative to each other and relative to glucose. Transcriptome data revealed that T. reesei up-regulated many genes (over 100; necromass versus glucose substrate) coding for CAZymes, including enzymes that would target individual layers of an Ascomycota fungal cell wall. We also observed differential expression of protease- and laccase-encoding genes on high versus low melanin necromass, highlighting a subset of genes (fewer than 15) possibly linked to the deconstruction of melanin, a cell wall constituent that limits necromass decay rates in nature. Collectively, these results advance our understanding of the genomic traits underpinning the rates and fates of carbon turnover in an understudied pool of Earth's belowground carbon, fungal necromass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625536PMC
http://dx.doi.org/10.1111/1462-2920.70006DOI Listing

Publication Analysis

Top Keywords

fungal necromass
12
cell wall
12
necromass
10
gene expression
8
melanin necromass
8
fungal
6
expression model
4
model fungus
4
fungus ascomycota
4
ascomycota insight
4

Similar Publications

Climate, plant and microorganisms jointly influence soil organic matter fractions in temperate grasslands.

Sci Total Environ

January 2025

Institute of Ecology and Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. Electronic address:

Soil organic carbon (SOC) plays a critical role in mitigating climate change. Conceptualizing SOC into particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) helps us more accurately predict the responses of organic carbon, with varying chemical composition, molecular size, and degree of association with soil minerals, to environmental changes. To assess the controlling factors of particulate organic carbon (POC) and mineral-associated organic carbon (MAOC), plant and soil samples were collected from 54 temperate grassland sites in Northern China, and the impacts of climate, plants, soil properties and microorganisms on POC and MAOC contents were analyzed.

View Article and Find Full Text PDF

Gene Expression by a Model Fungus in the Ascomycota Provides Insight Into the Decay of Fungal Necromass.

Environ Microbiol

December 2024

Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Twin Cities, Minnesota, USA.

Article Synopsis
  • Dead fungal cells, referred to as necromass, contribute significantly to long-term soil carbon pools, but the genes responsible for their decomposition are not well understood.
  • * The study focused on the fungus Trichoderma reesei and its response to low and high melanin levels in the necromass of another fungus, Hyaloscypha bicolor, revealing over 100 up-regulated genes for carbohydrate-active enzymes (CAZymes) in the presence of necromass compared to glucose.
  • * Differential expression of specific genes related to proteases and laccases was noted, particularly linked to the breakdown of melanin, offering insights into the factors affecting carbon turnover rates in this underexplored area of soil biology.
View Article and Find Full Text PDF

Inland wetlands might be an important "carbon sink", and the chronosequence development of newly formed inland wetlands offers a natural and suitable opportunity for studying the dynamic effect of plant and microbial necromass carbon (PlantC and MNC) on the soil organic carbon (SOC) stabilization. The space-for-time chronosequence approach was used and plots were established in the three ages of newly formed inland wetlands (2, 5, and 16 years). Soil samples were collected in the surface (0-10 cm) and subsurface soil (20-30 cm).

View Article and Find Full Text PDF

Restoration from grazing on the Tibetan plateau: Pathway-specific soil MAOC sequestration in meadow and peat wetlands.

J Environ Manage

December 2024

Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Jingan Road 5, 610068, Chengdu, China; Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, Münster, 48149, Germany. Electronic address:

Mineral-associated organic matter (MAOM) constitutes a significant portion of carbon (C) pools in wetlands, determining their role as C sinks or sources. Nevertheless, detailed knowledge of the response of MAOM formation pathways to wetland restoration is lacking. Here, we collected 0-20 cm soil samples from two typical wetlands (meadow and peat wetlands) subjected to both grazing and restoration treatments (through micro dam construction) in the Zoige area.

View Article and Find Full Text PDF

Lithological Controls on Soil Aggregates and Minerals Regulate Microbial Carbon Use Efficiency and Necromass Stability.

Environ Sci Technol

December 2024

Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.

Microbial carbon (C) use efficiency (CUE) drives soil C formation, while physical-chemical protection stabilizes subsequent microbial necromass, both shaped by soil aggregates and minerals. Soils inherit many properties from the parent material, yet the influence of lithology and associated soil geochemistry on microbial CUE and necromass stabilization remains unknow. Here, we quantified microbial CUE in well-aggregated bulk soils and crushed aggregates, as well as microbial necromass in bulk soils and the mineral-associated organic matter fraction, originating from carbonate-containing (karst) and carbonate-free (clastic rock, nonkarst) parent materials along a broad climatic gradient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!