Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Enhanced efficiency fertilizers (EEFs) are critical for sustainable agriculture, providing essential nutrients while minimizing environmental impact. However, developing EEFs that effectively degrade after use remains a significant challenge. This study investigates the biodegradation and nutrient release profiles of EEFs composed of poly(vinyl alcohol) (PVA) and starch-nutrient microspheres. EEFs were developed using a dual-layered approach: spray drying to create starch-nutrient microspheres, followed by melt processing with PVA to form pastilles. A 100-day soil biodegradation test monitored CO release as an indicator of microbial activity and material degradation. Comprehensive analyses, including chemical (FTIR), thermal (DSC), and morphological (SEM) assessments, were conducted. The increased CO band intensity (~1640 cm) after biodegradation indicated early stages of PVA degradation, accompanied by a rise in the glass transition temperature (Tg). Thermal analysis revealed nutrient release, as evidenced by a decrease in KNO peaks. Starch-based EEFs enhanced CO release and mycelial coverage, suggesting that starch-containing materials facilitated PVA degradation by improving microbial adhesion. This study underscores the potential of biodegradable EEFs to enhance soil health and reduce pollution, thereby contributing significantly to sustainable agriculture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.138395 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!