The purpose of this study is to clarify the roles of thermophilic bacteria in humification during hyperthermophilic composting (HTC) of organic wastes mainly composed of mushroom residue. Results showed that HTC with a long hyperthermophilic (>80°C) period lasting for 18 days produced 83 mg/g of humus in compost on day 27, significantly higher than that of thermophilic composting (TC, 9.7 mg/g). Machine learning models identified that the dominant thermophiles belonging to Bacillaceae, Sporolactobacillaceae, Thermaerobacteraceae, Paenibacillaceae families and the unique thermophiles (Thermus and Calditerricola) in HTC played important roles in accumulating stubborn and soluble humus including humic acid and fulvic acid. Hyperthermophilic fermentation not only recruited and enriched these thermophilic bacteria to rapidly degrade organic matter into bioavailable nutrients, but also upregulated the metabolic pathways relevant to the generation and oxidation of precursors including amino acids that would be polymerized into humus, thus efficiently converting organic waste into humus-rich compost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131957 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!