Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Brain metastasis stands as a leading contributor to mortality in lung cancer patients, yet the intricate mechanism underlying this phenomenon remains elusive. This underscores the need for robust preclinical models and effective treatment strategies. Emerging as viable in vitro models that closely replicate actual tumors, three-dimensional culture systems, particularly organoids derived from non-malignant cells or cancer organoids, have emerged as promising avenues. This review delves into the forefronts of fundamental research and clinical applications focused on lung cancer brain metastasis-derived organoids, highlighting current challenges and delineating prospects. These studies offer tremendous potential for clinical application despite being in nascent status.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbcan.2024.189235 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!