Over the past decade, a scientific field has developed demonstrating microRNAs are actively sorted into extracellular vesicles via specific nucleotide motifs that interact with discrete RNA-binding proteins. These microRNAs are preferentially transported into recipient cells where they can regulate specific cellular pathways. This mechanism could have enormous potential in explaining how cells signal and regulate other cells nearby or at a distance. Tens of studies have built this theme of a regulated transport of microRNAs. However, some concerns exist about this field. Taken together, there are concerns of a lack of a consistent motif, RNA-binding protein, or preferential microRNA involved in this process. Here we provide expert and extensive analysis of the field that makes the cases for and against an active sorting mechanism. We provide potential explanations on why there is a lack of agreement. Most importantly, we provide ideas on how to move this field forward with more rigor and reproducibility. It is hoped that engaging in a scientific debate of the pros and cons of this field, more rigorous experiments can be performed to conclusively demonstrate this biological activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.labinv.2024.102206 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Purpose: Inflammatory processes have been involved in diabetic retinopathy (DR). Interleukin (IL)-17A, a pro-inflammatory cytokine, is associated with DR occurrence and development. However, mechanisms underlying the IL-17A impact on DR need further investigations.
View Article and Find Full Text PDFJ Virol
December 2024
Laboratory of Virology, Regional Centre for Biotechnology, National Capital Region Biotechnology Science Cluster, Faridabad, Haryana, India.
Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
Exosomes, which are considered nanoscale extracellular vesicles (EVs), are secreted by various cell types and widely distributed in different biological fluids. They consist of multifarious bioactive molecules and use systematic circulation for their transfer to adjoining cells. This phenomenon enables exosomes to take part in intercellular and intracellular communications.
View Article and Find Full Text PDFNanoscale
January 2025
School of Natural Sciences, Faculty of science and engineering, Macquarie University, Sydney, NSW 2109, Australia.
As the prevalence of cancer is escalating, there is an increased demand for early and sensitive diagnostic tools. A major challenge in early detection is the lack of specific biomarkers, and a readily accessible, sensitive and rapid detection method. To meet these challenges, cancer-derived small extracellular vesicles (sEVs) have been discovered as a new promising cancer biomarker due to the high abundance of sEVs in body fluids and their extensive cargo of biomarkers.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China.
Postinterventional restenosis is a major challenge in the treatment of peripheral vascular disease. Current anti-restenosis drugs inhibit neointima hyperplasia but simultaneously impair endothelial repair due to indiscrminative cytotoxity. Stem cell-derived exosomes provide multifaceted therapeutic effects by delivering functional miRNAs to endothelial cells, macrophages, and vascular smooth muscle cells (VSMCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!