Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hypothesis: Relating surface characteristics (especially wetting and topography) and ice adhesion strength (IAS) have a long history. Several wetting parameters correlated with IAS have been introduced. However, subsequent efforts to repeat these correlations have produced contradictory results. A comprehensive literature survey on this topic reveals significant shortcomings in applying appropriate wetting and topography fundamental concepts and techniques. Inaccurate arguments are seen to be utilized in establishing wetting vs. IAS relationships, and even seemingly identical test methods are fundamentally inconsistent.
Experiments: This study first provides a thorough summary of all wetting and topography parameters reported to have a link with IAS. Then, it assesses a large and diverse set of surfaces regarding these wetting parameters (utilizing optical and force-based methods) and topography parameters (using techniques with different scales and resolutions). Finally, the correlation of these parameters with shear IAS is evaluated.
Findings: The findings shed light on the factual and conceptual errors that cause occasional irreproducible relationships with IAS. For instance, the renowned relationship between the practical work of adhesion [∝(1+cosθ)] and shear IAS is disputed due to fundamentally flawed assumptions. A potential wetting parameter for correlating to shear IAS on smooth non-soft surfaces in the wettability range of θ,θ<120 was identified, i.e., the tilting-obtained trigonometric contact angle hysteresis (i.e., [Formula: see text] ). Numerical correlations, geometrical similarities, and fundamental principles support the plausible link of this wetting parameter to shear IAS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.11.140 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!