We developed a mobile laboratory allowing field exposure of lung tissue models to ambient air at localities with various pollution sources (Background, Industrial, Traffic, Urban) in different seasons (summer/fall/winter). In samples originating from healthy and asthmatic individuals, we assessed the parameters of toxicity, lipid peroxidation and immune response; we further performed comprehensive monitoring of air pollutants at sampling sites. We measured lactate dehydrogenase (LDH) and adenylate kinase (AK) production and transepithelial electrical resistance (TEER), analyzed 15-F-isopostane (IsoP) and a panel of 20 cytokines/chemokines/growth factors. In the ambient air, we detected particulate matter (PM), and other relevant chemicals (benzene, benzo[a]pyrene (BaP), NOx). In the Traffic locality, we found very high concentrations of ultrafine particles and NOx and observed low TEER values in the exposed samples, indicating significant traffic-related toxicity of the ambient air. In the Urban locality, sampled in winter, we observed high PM and BaP levels. We found lower AK levels in samples from healthy individuals exposed in this locality than in the asthmatic samples. In the samples from the Industrial locality, sampled in summer, we detected higher concentrations of TNFα, MIP-1α, Eotaxin, GROα, GM-CSF, IL-6 and IL-7 than in the Urban locality samples. We hypothesize that pollen or other plant-related components of the ambient air were responsible for this response. In conclusion, our data proved the feasibility of our mobile laboratory for field measurements of the biological response of lung tissue models exposed to ambient air, reflecting not only the levels of toxic compounds, but also season-specific parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.117495DOI Listing

Publication Analysis

Top Keywords

ambient air
20
mobile laboratory
12
healthy asthmatic
8
asthmatic individuals
8
lung tissue
8
tissue models
8
urban locality
8
locality sampled
8
air
7
samples
6

Similar Publications

Unveiling the nexus between irradiation and phase reconstruction in tin-lead perovskite solar cells.

Nat Commun

January 2025

School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, China.

Tin-lead perovskites provide an ideal bandgap for narrow-bandgap perovskites in all-perovskite tandem solar cells, fundamentally improving power conversion efficiency. However, light-induced degradation in ambient air is a major issue that can hinder the long-term operational stability of these devices. Understanding the specifics of what occurs during this pathway provides the direction for improving device stability.

View Article and Find Full Text PDF

Urbanization and industrialization have drastically increased ambient air pollution in urban areas globally from vehicle emissions, solid fuel combustion and industrial activities leading to some of the worst air quality conditions. Air pollution in Ghana causes approximately 28,000 premature deaths and disabilities annually, ranking as a leading cause of mortality and disability-adjusted life years. This study evaluated the annual concentrations of PM NO and O in the ambient air of 57 cities in Ghana for two decades using historical and forecasted data from satellite measurements.

View Article and Find Full Text PDF

Dicarboxylic acids (DCAs), with their deliquescence and hygroscopic nature, can function as cloud condensation nuclei (CCN) and ice nuclei (IN), affecting rainfall patterns. DCA analysis can serve as organic molecular markers for anthropogenic and biogenic sources. Very few studies deal with the optimization of the protocol for qualitative and quantitative analysis of DCAs using gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Flexibility has been a key selling point in the development of carbon-based electronics and sensors with the promise of further development into wearable devices. Semiconducting single-walled carbon nanotubes (SWNTs) lend themselves well to applications requiring flexibility while achieving high-performance. Our previous work has demonstrated a tri-layer polymer dielectric composed of poly(lactic acid) (PLA), poly(vinyl alcohol) with cellulose nanocrystals (PVAc), and toluene diisocyanate-terminated poly(caprolactone) (TPCL), yielding an environmentally benign and solution-processable n-type thin-film transistor (TFT).

View Article and Find Full Text PDF

Elevated atmospheric CO2 (e[CO2]) often enhances plant photosynthesis and improves water status. However, the effects of e[CO2] vary significantly and are believed to be influenced by water availability. With the future warmer climate expected to increase the frequency and severity of extreme rainfall, the response of plants to e[CO2] under changing precipitation patterns remains uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!