The impact of long axial field of view (LAFOV) PET on oncologic imaging.

Eur J Radiol

King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College, London SE1 7EH, UK. Electronic address:

Published: December 2024

The development of long axial field of view (LAFOV) positron emission tomography coupled with computed tomography (PET/CT) scanners might be considered the biggest step forward in PET imaging since it became a mainstream clinical modality. Despite increased capital and maintenance costs and data storage requirements, the improvement in image quality, significantly faster acquisition times and lower radiopharmaceutical administered activities, allow a high quality and more efficient clinical service. This step change in technology overcomes some of the limitations of standard short axial field of view scanners. It allows simultaneous imaging of all body systems, and with the ability to obtain high temporal resolution data, it increases potential research applications, particularly in multisystem disease or for dosimetry measurements of novel radiopharmaceuticals. The improvements in sensitivity and signal-to-noise facilitates the use of tracers with long half-lives and low administered activity (e.g. [Zr]-labelled monoclonal antibodies) or very short half-lives (e.g. [Rb]), opening up applications that hitherto have been challenging. It is early in the evolution of LAFOV PET/CT and the advantages these systems offer have still to be fully realised in providing additional impact in clinical practice. In this article we describe the potential advantages of LAFOV PET technology and some of the clinical and research applications where it has been applied as well as some of the future developments that may enhance the modality further.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2024.111873DOI Listing

Publication Analysis

Top Keywords

axial field
12
field view
12
long axial
8
view lafov
8
lafov pet
8
impact long
4
lafov
4
pet oncologic
4
oncologic imaging
4
imaging development
4

Similar Publications

Background: This study investigates a multi-angle acquisition method aimed at improving image quality in organ-targeted PET detectors with planar detector heads. Organ-targeted PET technologies have emerged to address limitations of conventional whole-body PET/CT systems, such as restricted axial field-of-view (AFOV), limited spatial resolution, and high radiation exposure associated with PET procedures. The AFOV in organ-targeted PET can be adjusted to the organ of interest, minimizing unwanted signals from other parts of the body, thus improving signal collection efficiency and reducing the dose of administered radiotracer.

View Article and Find Full Text PDF

Background And Objective: Although prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) has impacted the investigation and management of biochemical recurrence (BCR) of prostate cancer, negative scans are common at low rising prostate-specific antigen (PSA) levels. PET/CT devices with an extended axial field-of-view, such as the Siemens Biograph Vision Quadra (Quadra) scanner, have substantially higher sensitivity than conventional field-of-view scanners. Our aim was to assess whether the enhanced signal-to-noise ratios achieved on the Quadra scanner improve detection of low-volume disease and thereby increase detection of PC at low PSA levels.

View Article and Find Full Text PDF

A Versatile Drift-Free Super-Resolution Imaging Method via Oblique Bright-Field Correlation.

Adv Sci (Weinh)

December 2024

Department of Bioengineering, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.

High-resolution optical microscopy, particularly super-resolution localization microscopy, requires precise real-time drift correction to maintain constant focus at nanoscale precision during the prolonged data acquisition. Existing methods, such as fiducial marker tracking, reflection monitoring, and bright-field image correlation, each provide certain advantages but are limited in their broad applicability. In this work, a versatile and robust drift correction technique is presented for single-molecule localization-based super-resolution microscopy.

View Article and Find Full Text PDF

Elucidating subcellular architecture and dynamics at isotropic 100-nm resolution with 4Pi-SIM.

Nat Methods

December 2024

Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.

Three-dimensional structured illumination microscopy (3D-SIM) provides excellent optical sectioning and doubles the resolution in all dimensions compared with wide-field microscopy. However, its much lower axial resolution results in blurred fine details in that direction and overall image distortion. Here we present 4Pi-SIM, a substantial revamp of IS that synergizes 3D-SIM with interferometric microscopy to achieve isotropic optical resolution through interference in both the illumination and detection wavefronts.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) film attracted considerable attention in information storage and encryption, three-dimensional display, and chiral recognition. However, due to the limited molecular mobility within thin film, achieving a high asymmetry factor and non-contact modulation of CPL remain challenging. In this work, color-switchable homochiral CPL films with high luminescence asymmetry factor (glum~0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!