Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Biopharmaceutics Classification System (BCS) has facilitated biowaivers and played a significant role in enhancing drug regulation and development efficiency. However, the productivity of measuring the key discriminative properties of BCS, solubility and permeability, still requires improvement, limiting high-throughput applications of BCS, which is essential for evaluating drug candidate developability and guiding formulation decisions in the early stages of drug development. In recent years, advancements in machine learning (ML) and molecular characterization have revealed the potential of quantitative structure-performance relationships (QSPR) for rapid and accurate BCS classification. The present study aims to develop a web platform for high-throughput BCS classification based on high-performance ML models. Initially, four data sets of BCS-related molecular properties: log , log , log , and log were curated. Subsequently, 6 ML algorithms or deep learning frameworks were employed to construct models, with diverse molecular representations ranging from one-dimensional molecular fingerprints, descriptors, and molecular graphs to three-dimensional molecular spatial coordinates. By comparing different combinations of molecular representations and learning algorithms, LightGBM exhibited excellent performance in solubility prediction, with an of 0.84; AttentiveFP outperformed others in permeability prediction, with values of 0.96 and 0.76 for log and log , respectively; and XGBoost was the most accurate for log prediction, with an of 0.71. When externally validated on a marketed drug BCS category data set, the best-performing models achieved classification accuracies of over 77 and 73% for solubility and permeability, respectively. Finally, the well-trained models were embedded into the first ML-based BCS class prediction web platform (x f), enabling pharmaceutical scientists to quickly determine the BCS category of candidate drugs, which will aid in the high-throughput BCS assessment for candidate drugs during the preformulation stage, thereby promoting reduced risk and enhanced efficiency in drug development and regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.4c00946 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!