Polyoxylglycerides-based solid mixtures, commercially known as Gelucire®, are excipients commonly used for bioavailability improvement of poorly water-soluble drugs. However, their effect on solutions containing hydrophobic drugs above crystalline solubility has not yet been explored. The goal of this study was to investigate the impact of a mix of two commercial Gelucire® with high HLB values (Gelucire®50/13 and Gelucire®48/16) on the amorphous solubility and crystallization from supersaturated solutions of ketoprofen, used as model drug. The results evidenced a strong interaction between Gelucire® components and the drug-rich nanodroplets generated upon liquid-liquid phase separation. This led to two important consequences: on one hand, the drug amorphous solubility was decreased, together with the amorphous-to-crystalline solubility ratio; on the other hand, the enlargement and coalescence of the drug-rich droplets were prevented. This stabilizing effect towards the drug-rich phase was comparable to, or even stronger than, that obtained with traditional amorphous polymers (PVP or HPMC) and contributed to inhibiting drug crystallization. Notably, the impact of Gelucire® on drug crystallization from the supersaturated state depended on its micellar behaviour: the monomeric form (below 50 μg/mL) accelerated the formation of crystals, whereas pre-micellar aggregates (50-500 μg/mL) and solubilizing micelles (above 500 μg/mL) inhibited drug crystallization. These findings will contribute to a better understanding of the behaviour of supersaturated drug solutions in the presence of Gelucire® and will facilitate the rational design of supersaturating drug delivery systems containing these excipients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2024.125030DOI Listing

Publication Analysis

Top Keywords

amorphous solubility
12
crystallization supersaturated
12
drug crystallization
12
solubility crystallization
8
supersaturated state
8
drug
7
gelucire®
6
solubility
5
crystallization
5
polyoxylglycerides-based excipients
4

Similar Publications

Amorphous solid dispersion (ASD) technology is often used as a promising strategy to improve the solubility of active pharmaceutical ingredients (APIs). ASDs allow APIs to be dispersed at the molecular level in a polymer carrier, destroying the crystalline structure of the APIs and, thanks to the polymer, providing long-term supersaturation in solution. However, stability issues are an obstacle to the development of new medications with ASD.

View Article and Find Full Text PDF

Amphiphilic bottlebrush block copolymers (BBCs) with tadpole-like, coil-rod architecture can be used to self-assemble into functional polymer nanodiscs directly in water. The hydrophobic segments of the BBC were tuned via the ratio of ethoxy-ethyl glycidyl ether (EE) to tetrahydropyranyl glycidyl ether (TP) within the grafted polymer sidechains. In turn, this variation controlled the sizes, pH-responsiveness, and drug loading capacity of the self-assembled nanodiscs.

View Article and Find Full Text PDF

Isoniazid (INH) and rifampicin (RIF) are the two main drugs used for the management of tuberculosis. They are often used as a fixed drug combination, but their delivery is challenged by suboptimal solubility and physical instability. This study explores the potential of active pharmaceutical ingredient-ionic liquids (API-ILs) to improve the physicochemical and pharmaceutical properties of INH and RIF.

View Article and Find Full Text PDF

Flurbiprofen (FBP) is poorly water-soluble BCS class II drug with anti-inflammatory and analgesic effects, used to treat arthritis and degenerative joint diseases. This study was aimed to develop SNEDDS loaded with FBP. Six SNEDDS using two oils olive oil (F, F, F) and castor oil (F, F, F) with three different Smix ratios consisting of Tween 20 and PEG 400 (1:1, 1:2, 2:1) were prepared and characterized.

View Article and Find Full Text PDF

This study evaluates the efficacy of twin screw melt granulation (TSMG), and hot-melt extrusion (HME) techniques in enhancing the solubility and dissolution of simvastatin (SIM), a poorly water-soluble drug with low bioavailability. Additionally, the study explores the impact of binary polymer blends on the drug's miscibility, solubility, and in vitro release profile. SIM was processed with various polymeric combinations at a 30% / drug load, and a 1:1 ratio of binary polymer blends, including Soluplus (SOP), Kollidon K12 (K12), Kollidon VA64 (KVA), and Kollicoat IR (KIR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!