Modulation of anticipatory brain activity as a function of action complexity.

Biol Psychol

Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome 00135, Italy; Santa Lucia Foundation IRCCS, Rome 00179, Italy. Electronic address:

Published: November 2024

AI Article Synopsis

  • The paper explores how the brain prepares for actions of increasing complexity, utilizing event-related potentials (ERP) analysis during a visuomotor task.
  • Different actions, from a simple keypress to more complex movements like arm extensions and stepping, engage distinct preparatory brain activity patterns.
  • Key findings reveal that as task complexity rises, motor areas show varied activation, highlighting the brain's ability to adaptively anticipate and prepare for different types of movements.

Article Abstract

Stimulus-driven actions are preceded by preparatory brain activity that can be expressed by event-related potentials (ERP). Literature on this topic has focused on simple actions, such as the finger keypress, finding activity in frontal, parietal, and occipital areas detectable up to two seconds before the stimulus onset. Little is known about the preparatory brain activity when the action complexity increases, and specific brain areas designated to achieve movement integration intervene. This paper aims to identify the time course of preparatory brain activity associated with actions of increasing complexity using ERP analysis and a visuomotor discrimination task. Motor complexity was manipulated by asking nineteen volunteers to provide their response by simply pressing a key or by adding to the keypress arm extensions alone, or in combination with a standing step (involving the whole body). Results showed that these actions of increasing levels of complexity appear to be associated with different patterns of preparatory brain activity in which the found components were differently modulated. The simple keypress was characterized by the prominent motor excitatory preparation in premotor areas paralleled by the largest prefrontal inhibitory/attentional control. Reaching presented a dominant parietal preparation confirming the role of these integration areas in reaching actions toward a goal. Stepping was characterized by localized activity in the bilateral dorsomedial parieto-occipital areas attributable to sensory readiness, for the approaching stimulus. In conclusion, the brain can optimally anticipate any stimulus-driven action modulating the activity in the brain areas specialized in the preparation of that action type.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsycho.2024.108959DOI Listing

Publication Analysis

Top Keywords

brain activity
20
preparatory brain
16
brain
8
activity
8
action complexity
8
brain areas
8
actions increasing
8
areas
6
complexity
5
actions
5

Similar Publications

The and of Vincent van Gogh: neuropeptides of bondedness and loss.

Front Psychol

December 2024

Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, United States.

We introduce two Korean-named yet transcultural feelings, and , to fill gaps in neuroscientific understanding of mammalian bondedness, loss, and aggression. is a visceral sense of connectedness to a person, place, or thing that may arise after proximity, yet does not require intimacy. The brain opioid theory of social attachment (BOTSA) supports the idea that involves increased activity of enkephalins and beta-endorphins.

View Article and Find Full Text PDF

Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming.

View Article and Find Full Text PDF

Monitoring of cancer ferroptosis with [F]hGTS13, a system xc- specific radiotracer.

Theranostics

January 2025

Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.

View Article and Find Full Text PDF

Purpose: Pain is a multidimensional, unpleasant emotional and sensory experience, and accurately assessing its intensity is crucial for effective management. However, individuals with cognitive impairments or language deficits may struggle to accurately report their pain. EEG provides insight into the neurological aspects of pain, while facial EMG captures the sensory and peripheral muscle responses.

View Article and Find Full Text PDF

The Impact of Brain Tumors on Emotional and Behavioral Functioning.

Cureus

December 2024

Department of General Surgery, General Medicine Practice Program and Surgery, Batterjee Medical College, Jeddah, SAU.

While the physical manifestations of brain tumors are well-documented, their impact on the emotional and psychological landscape of patients is of equal importance. Patients frequently experience a range of challenges from depression, apathy, and increased aggression to personality changes. The complexity of these changes and their effects on emotional functioning are shaped by tumor characteristics, including location, growth rate, and the corresponding hormonal imbalances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!