3D printing in scaffold production offers a promising approach, enabling precise architectural design that closely mimics the porosity and interconnectivity of natural bone. β-Tricalcium phosphate (β-Ca₃(PO₄)₂, β-TCP), with a chemical composition similar to the inorganic component of bone, is a widely used material for scaffold fabrication. Recent advances have made it possible to functionalize ceramic scaffolds to improve bone regeneration and repair while enabling the in situ release of therapeutic agents to treat bone infections. In this study, 3D-printed β-TCP scaffolds were coated with bioactive glasses, 45S5 (45SiO₂ - 24.5Na₂O - 24.5CaO - 6P₂O₅, wt.%) and 58S (58SiO₂ - 33CaO - 9P₂O₅, wt.%), using sol-gel solutions through a vacuum impregnation technique. The β-TCP ink exhibited pseudoplastic behavior, which facilitated its 3D printing. The resulting scaffolds demonstrated high fidelity to the designed model, featuring well-aligned filaments and minimal collapse of the lower layers after sintering. Elemental mapping revealed that 45S5 glass formed a surface coating around the scaffold struts, whereas 58S glass penetrated the internal structure, this occurred due to their differing viscosities at high temperatures. Compared to uncoated β-TCP scaffolds, the coatings significantly improved mechanical strength, with increases of 63% and 126% for scaffolds coated with 45S5 and 58S, respectively. Bioactivity was confirmed through an apatite mineralization assay in simulated body fluid, which demonstrated hydroxyapatite precipitation on both coated scaffolds, albeit with distinct morphologies. Since this study focused on acellular scaffolds, further research is necessary to fully explore the potential of these bioactive scaffolds with optimized mechanical properties in biological systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2024.106850DOI Listing

Publication Analysis

Top Keywords

β-tcp scaffolds
12
scaffolds coated
12
scaffolds
9
mechanical strength
8
3d-printed β-tcp
8
coated bioactive
8
bioactive glasses
8
β-tcp
5
enhanced mechanical
4
strength bioactivity
4

Similar Publications

The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using H NMR, C NMR, and HRMS techniques.

View Article and Find Full Text PDF

Succinate dehydrogenase (SDH) has been identified as one of the ideal targets for the development of novel nematicides. However, the resistance of nematodes to fluopyram, one of the commercialized SDH inhibitors, is becoming a growing concern. Since expanding the structural diversity around an active scaffold is a useful strategy for drug development, herein a series of fluopyram analogues with a broad, biologically relevant indole moiety were synthesized and evaluated for nematicidal activity against C.

View Article and Find Full Text PDF

Exploring the multifaceted roles of metal-organic frameworks in ecosystem regulation.

J Mater Chem B

January 2025

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.

Achieving microecological balance is a complex environmental challenge. This is because the equilibrium of microecological systems necessitates both the eradication of harmful microorganisms and preservation of the beneficial ones. Conventional materials predominantly target the elimination of pathogenic microorganisms and often neglect the protection of advantageous microbial species.

View Article and Find Full Text PDF

Poly(lactic-co-glycolic acid) (PLGA) has been widely employed for various biomedical applications owing to its biodegradability and biocompatibility. The discovery of the stereocomplex formation between enantiomeric alternating PLGA pairs underscored its potential as high-performance biodegradable materials with diverse material properties and biodegradability. Herein, we have established a regio- and stereoselective ring-opening polymerization approach for the synthesis of stereocomplexed isoenriched alternating PLGA from racemic methyl-glycolide (rac-MG).

View Article and Find Full Text PDF

Near-infrared (NIR) chemiluminescent probes have attracted increasing attention in recent years due to their attractive properties for imaging. Herein, we developed a NIR chemiluminophore silicon rhodamine (SiRCL-1) based on the intramolecular energy transfer process from excited state benzoate to a silicon rhodamine emitter under aqueous conditions. SiRCL-1 exhibited dual emission peaks at 540 nm and 680 nm with a high signal penetration through tissue at 680 nm (>30 mm) and long-lasting luminescence (>50 min), demonstrating its significance as a chemiluminescence scaffold for biological application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!