Production, characterization, and application of zein-polyphenol complexes and conjugates: A comprehensive review.

Food Chem

College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China. Electronic address:

Published: March 2025

The corn protein zein has several advantages, such as low production cost, excellent biodegradability, good biocompatibility, and low allergenicity. However, the application of zein in the food industry is limited by its high hydrophobicity. To increase the functionality of zein and meet the diverse requirements of food systems, researchers have explored several methods to form complexes or conjugates through noncovalent or covalent interactions, respectively, with polyphenols. This paper comprehensively reviews the formation mechanisms, preparation methods, and influencing factors of zein-polyphenol complexes and conjugates. In addition, the paper presents the techniques used to characterize zein-polyphenol complexes and conjugates and their various new functional properties and bioactivities including water solubility, emulsification activity, in vitro antioxidant activity and antibacterial activity, as well as factors that affect these properties. Furthermore, the potential uses of these compounds in the food sector and future research areas are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.142309DOI Listing

Publication Analysis

Top Keywords

complexes conjugates
16
zein-polyphenol complexes
12
production characterization
4
characterization application
4
application zein-polyphenol
4
complexes
4
conjugates
4
conjugates comprehensive
4
comprehensive review
4
review corn
4

Similar Publications

Hyaluronic acid (HA) is a popular surface modifier in targeted cancer delivery due to its receptor-binding abilities. However, HA alone faces limitations in lipid solubility, biocompatibility, and cell internalization, making it less effective as a standalone delivery system. This comprehensive study aimed to explore a dynamic landscape of complexation in HA-based nanoparticles in cancer therapy, examining diverse aspects from influential modifiers to emerging trends in cancer diagnostics.

View Article and Find Full Text PDF

Due to the tremendous heterogeneity of disease manifestations, many complex diseases that were once thought to be single diseases are now considered to have disease subtypes. Disease subtyping analysis, that is the identification of subgroups of patients with similar characteristics, is the first step to accomplish precision medicine. With the advancement of high-throughput technologies, omics data offers unprecedented opportunity to reveal disease subtypes.

View Article and Find Full Text PDF

Leveraging Metal Complexes for Microsecond Lifetime-Based Chloride Sensing.

ACS Sens

January 2025

Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13676, United States.

Chloride is the most abundant anion in cells and plays many critical roles in maintaining cellular homeostasis. However, current chloride indicators are rare with inherent sensitivity in their emission properties, such as vulnerability to pH changes or short emission lifetimes. These limitations restrict their application in aqueous media and imaging.

View Article and Find Full Text PDF

Conjugation plays a major role in dissemination of antimicrobial resistance genes. Following transfer of IncF-like plasmids, recipients become refractory to a second wave of conjugation with the same plasmid via entry (TraS) and surface (TraT) exclusion mechanisms. Here, we show that TraT from the pKpQIL and F plasmids (TraT and TraT) exhibits plasmid surface exclusion specificity.

View Article and Find Full Text PDF

Digestive cancers: mechanisms, therapeutics and management.

Signal Transduct Target Ther

January 2025

Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

Cancers of the digestive system are major contributors to global cancer-associated morbidity and mortality, accounting for 35% of annual cases of cancer deaths. The etiologies, molecular features, and therapeutic management of these cancer entities are highly heterogeneous and complex. Over the last decade, genomic and functional studies have provided unprecedented insights into the biology of digestive cancers, identifying genetic drivers of tumor progression and key interaction points of tumor cells with the immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!